Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Sigma-1 Receptor Antagonism Restores Injury-Induced Decrease of Voltage-Gated Ca2+ Current in Sensory Neurons

Bin Pan, Yuan Guo, Wai-Meng Kwok, Quinn Hogan and Hsiang-en Wu
Journal of Pharmacology and Experimental Therapeutics August 2014, 350 (2) 290-300; DOI: https://doi.org/10.1124/jpet.114.214320
Bin Pan
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuan Guo
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wai-Meng Kwok
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Quinn Hogan
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hsiang-en Wu
Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin (B.P., Y.G., W.-M.K., Q.H., H.-e.W.); and Department of Anesthesiology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin (Q.H.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sigma-1 receptor (σ1R), an endoplasmic reticulum–chaperone protein, can modulate painful response after peripheral nerve injury. We have demonstrated that voltage-gated calcium current is inhibited in axotomized sensory neurons. We examined whether σ1R contributes to the sensory dysfunction of voltage-gated calcium channel (VGCC) after peripheral nerve injury through electrophysiological approach in dissociated rat dorsal root ganglion (DRG) neurons. Animals received either skin incision (Control) or spinal nerve ligation (SNL). Both σ1R agonists, (+)pentazocine (PTZ) and DTG [1,3-di-(2-tolyl)guanidine], dose dependently inhibited calcium current (ICa) with Ba2+ as charge carrier in control sensory neurons. The inhibitory effect of σ1R agonists on ICa was blocked by σ1R antagonist, BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-m​ethylpiperazine dihydrochloride) or BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-m​ethyl-2-(dimethylamino)ethylamine dihydrobromide). PTZ and DTG showed similar effect on ICa in axotomized fifth DRG neurons (SNL L5). Both PTZ and DTG shifted the voltage-dependent activation and steady-state inactivation of VGCC to the left and accelerated VGCC inactivation rate in both Control and axotomized L5 SNL DRG neurons. The σ1R antagonist, BD1063 (10 μM), increases ICa in SNL L5 neurons but had no effect on Control and noninjured fourth lumbar neurons in SNL rats. Together, the findings suggest that activation of σR1 decreases ICa in sensory neurons and may play a pivotal role in pain generation.

Footnotes

    • Received February 28, 2014.
    • Accepted May 29, 2014.
  • This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grant K01-DA024751] (to H.-e.W.); and the National Institutes of Health National Institute of Neurological Disorders and Stroke [Grant R01-NS42150] (to Q.H.).

  • dx.doi.org/10.1124/jpet.114.214320.

  • U.S. Government work not protected by U.S. copyright
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 350 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 350, Issue 2
1 Aug 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sigma-1 Receptor Antagonism Restores Injury-Induced Decrease of Voltage-Gated Ca2+ Current in Sensory Neurons
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Sigma-1 Receptor Regulates ICa in Sensory Neurons

Bin Pan, Yuan Guo, Wai-Meng Kwok, Quinn Hogan and Hsiang-en Wu
Journal of Pharmacology and Experimental Therapeutics August 1, 2014, 350 (2) 290-300; DOI: https://doi.org/10.1124/jpet.114.214320

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleNeuropharmacology

Sigma-1 Receptor Regulates ICa in Sensory Neurons

Bin Pan, Yuan Guo, Wai-Meng Kwok, Quinn Hogan and Hsiang-en Wu
Journal of Pharmacology and Experimental Therapeutics August 1, 2014, 350 (2) 290-300; DOI: https://doi.org/10.1124/jpet.114.214320
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Oxysterols and ethanol
  • P-glycoprotein Apical Efflux Ratio for Compound Optimization
  • Pharmacology of Carbamate Insecticides at MT1 & MT2
Show more Neuropharmacology

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics