Abstract
Cytochrome P450–derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface Gs-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein–coupled receptor, we assessed 11,12-EET-induced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (±)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (±)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (±)-11,12-EET and 11(R),12(S)-EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (±)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of Gs in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (±)-11,12-EET. The downregulation of Gq/11 failed to prevent 11,12-EET–induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a Gs-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.
Footnotes
- Received February 25, 2014.
- Accepted April 21, 2014.
The experimental work described in this manuscript was partly supported by the Deutsche Forschungsgemeinschaft (SFB TR-23/A6 and Exzellenzcluster 147 “Cardio-Pulmonary Systems”). J.R.F was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM31278]; and the Robert A. Welch Foundation [Grant GL625910].
↵This article has supplementary material available at jpet.aspetjournals.org.
- Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|