Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMetabolism, Transport, and Pharmacogenomics

Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat

Sarah E. Lacher, Julia N. Gremaud, Kasse Skagen, Emily Steed, Rachel Dalton, Kent D. Sugden, Fernando Cardozo-Pelaez, Catherine M. T. Sherwin and Erica L. Woodahl
Journal of Pharmacology and Experimental Therapeutics February 2014, 348 (2) 336-345; DOI: https://doi.org/10.1124/jpet.113.209791
Sarah E. Lacher
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia N. Gremaud
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kasse Skagen
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emily Steed
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rachel Dalton
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kent D. Sugden
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fernando Cardozo-Pelaez
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherine M. T. Sherwin
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erica L. Woodahl
Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a−/−/mdr1b−/−) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil—37.0 [95% confidence interval (CI): 33.2–41.4], 46.2 (42.5–50.2), and 34.1 µM (31.2–37.2)—respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a−/−/mdr1b−/− mice: clearances of 0.47 [95% confidence interval (CI): 0.42–0.52] and 0.78 l/h (0.58–0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50–2.04) and 3.36 liters (2.39–4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a−/−/mdr1b−/− mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport.

Footnotes

    • Received September 23, 2013.
    • Accepted November 26, 2013.
  • The authors report no conflict of interest.

  • This work was supported by the National Institutes of Health Centers of Biomedical Research Excellence grants that support the Center for Biomolecular Structure and Dynamics [Grant P20GM103546], the Center for Environmental Health Sciences [Grant P20RR017670], and the Center for Structural and Functional Neuroscience [Grant P20RR015583]; the American Foundation for Pharmaceutical Education, American Association of College of Pharmacy, New Investigators Program (E.L.W.); the Institute of Translational Health Sciences [Grant UL1TR000423] (E.L.W.]; and the American Foundation for Pharmacy Education Predoctoral Fellowship (S.E.L.).

  • dx.doi.org/10.1124/jpet.113.209791.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 348 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 348, Issue 2
1 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMetabolism, Transport, and Pharmacogenomics

Absence of Transport of Paraquat by P-Glycoprotein

Sarah E. Lacher, Julia N. Gremaud, Kasse Skagen, Emily Steed, Rachel Dalton, Kent D. Sugden, Fernando Cardozo-Pelaez, Catherine M. T. Sherwin and Erica L. Woodahl
Journal of Pharmacology and Experimental Therapeutics February 1, 2014, 348 (2) 336-345; DOI: https://doi.org/10.1124/jpet.113.209791

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleMetabolism, Transport, and Pharmacogenomics

Absence of Transport of Paraquat by P-Glycoprotein

Sarah E. Lacher, Julia N. Gremaud, Kasse Skagen, Emily Steed, Rachel Dalton, Kent D. Sugden, Fernando Cardozo-Pelaez, Catherine M. T. Sherwin and Erica L. Woodahl
Journal of Pharmacology and Experimental Therapeutics February 1, 2014, 348 (2) 336-345; DOI: https://doi.org/10.1124/jpet.113.209791
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • DISCUSSION
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • HDL Mimetic 4F Modulates Aβ Distribution in Brain and Plasma
  • AOX1 Inhibition by Gefitinib, Erlotinib, and Metabolites
  • Catalytic Activity of CYP2C9 Variants
Show more Metabolism, Transport, and Pharmacogenomics

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics