Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCardiovascular

Dissociation of Hyperglycemia from Altered Vascular Contraction and Relaxation Mechanisms in Caveolin-1 Null Mice

Luminita H. Pojoga, Tham M. Yao, Lauren A. Opsasnick, Amanda E. Garza, Ossama M. Reslan, Gail K. Adler, Gordon H. Williams and Raouf A. Khalil
Journal of Pharmacology and Experimental Therapeutics February 2014, 348 (2) 260-270; DOI: https://doi.org/10.1124/jpet.113.209189
Luminita H. Pojoga
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tham M. Yao
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lauren A. Opsasnick
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amanda E. Garza
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ossama M. Reslan
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gail K. Adler
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon H. Williams
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raouf A. Khalil
Cardiovascular Endocrine Section, Endocrinology, Diabetes and Hypertension Division (L.H.P., T.M.Y., A.E.G., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., O.M.R., R.A.K.), Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hyperglycemia and endothelial dysfunction are associated with hypertension, but the specific causality and genetic underpinning are unclear. Caveolin-1 (cav-1) is a plasmalemmal anchoring protein and modulator of vascular function and glucose homeostasis. Cav-1 gene variants are associated with reduced insulin sensitivity in hypertensive individuals, and cav-1−/− mice show endothelial dysfunction, hyperglycemia, and increased blood pressure (BP). On the other hand, insulin-sensitizing therapy with metformin may inadequately control hyperglycemia while affecting the vascular outcome in certain patients with diabetes. To test whether the pressor and vascular changes in cav-1 deficiency states are related to hyperglycemia and to assess the vascular mechanisms of metformin under these conditions, wild-type (WT) and cav-1−/− mice were treated with either placebo or metformin (400 mg/kg daily for 21 days). BP and fasting blood glucose were in cav-1−/− > WT and did not change with metformin. Phenylephrine (Phe)- and KCl-induced aortic contraction was in cav-1−/− < WT; endothelium removal, the nitric-oxide synthase (NOS) blocker l-NAME (Nω-nitro-l-arginine methyl ester), or soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) enhanced Phe contraction, and metformin blunted this effect. Acetylcholine-induced relaxation was in cav-1−/− > WT, abolished by endothelium removal, l-NAME or ODQ, and reduced with metformin. Nitric oxide donor sodium nitroprusside was more potent in inducing relaxation in cav-1−/− than in WT, and metformin reversed this effect. Aortic eNOS, AMPK, and sGC were in cav-1−/− > WT, and metformin decreased total and phosphorylated eNOS and AMPK in cav-1−/−. Thus, metformin inhibits both vascular contraction and NO-cGMP-dependent relaxation but does not affect BP or blood glucose in cav-1−/− mice, suggesting dissociation of hyperglycemia from altered vascular function in cav-1-deficiency states.

Footnotes

    • Received August 29, 2013.
    • Accepted November 22, 2013.
  • This work was supported by the National Institutes of Health National Heart, Lung, and Blood Institute [Grants HL-104032 (to L.H.P.), HL-69208 and T32-HL007609 (to G.H.W.), and HL-65998, HL-98724, and HL-111775 (to R.A.K.)]; National Institutes of Health The Eunice Kennedy Shriver National Institute of Child Health and Human Development [Grant HD-60702] (to R.A.K.); and the American Heart Association [Grant 0735609T] (to L.H.P.).

  • dx.doi.org/10.1124/jpet.113.209189.

  • Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 348 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 348, Issue 2
1 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dissociation of Hyperglycemia from Altered Vascular Contraction and Relaxation Mechanisms in Caveolin-1 Null Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCardiovascular

Glycemic and Vascular Dysfunction in Cav-1 Deficiency

Luminita H. Pojoga, Tham M. Yao, Lauren A. Opsasnick, Amanda E. Garza, Ossama M. Reslan, Gail K. Adler, Gordon H. Williams and Raouf A. Khalil
Journal of Pharmacology and Experimental Therapeutics February 1, 2014, 348 (2) 260-270; DOI: https://doi.org/10.1124/jpet.113.209189

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCardiovascular

Glycemic and Vascular Dysfunction in Cav-1 Deficiency

Luminita H. Pojoga, Tham M. Yao, Lauren A. Opsasnick, Amanda E. Garza, Ossama M. Reslan, Gail K. Adler, Gordon H. Williams and Raouf A. Khalil
Journal of Pharmacology and Experimental Therapeutics February 1, 2014, 348 (2) 260-270; DOI: https://doi.org/10.1124/jpet.113.209189
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Immunoliposome-Based Targeting of Endothelial RhoA Signaling
  • Anakinra dispensed in plastic vs glass syringes
  • The effect of Dexmedetomidine on PAH improvement
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics