Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCellular and Molecular

A Novel and Potent Inhibitor of Dimethylarginine Dimethylaminohydrolase: A Modulator of Cardiovascular Nitric Oxide

Yohannes T. Ghebremariam, Daniel A. Erlanson and John P. Cooke
Journal of Pharmacology and Experimental Therapeutics January 2014, 348 (1) 69-76; DOI: https://doi.org/10.1124/jpet.113.206847
Yohannes T. Ghebremariam
Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas (Y.T.G., J.P.C.); and SPARK Translational Research Program, Stanford University, School of Medicine, Stanford, California (D.A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel A. Erlanson
Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas (Y.T.G., J.P.C.); and SPARK Translational Research Program, Stanford University, School of Medicine, Stanford, California (D.A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John P. Cooke
Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas (Y.T.G., J.P.C.); and SPARK Translational Research Program, Stanford University, School of Medicine, Stanford, California (D.A.E.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

PD 404182 [6H-6-imino-(2,3,4,5-tetrahydropyrimido)[1,2-c]-[1,3]benzothiazine], a heterocyclic iminobenzothiazine derivative, is a member of the Library of Pharmacologically Active Compounds (LOPAC) that is reported to possess antimicrobial and anti-inflammatory properties. In this study, we used biochemical assays to screen LOPAC against human dimethylarginine dimethylaminohydrolase isoform 1 (DDAH1), an enzyme that physiologically metabolizes asymmetric dimethylarginine (ADMA), an endogenous and competitive inhibitor of nitric oxide (NO) synthase. We discovered that PD 404182 directly and dose-dependently inhibits DDAH. Moreover, PD 404182 significantly increased intracellular levels of ADMA in cultured primary human vascular endothelial cells (ECs) and reduced lipopolysaccharide-induced NO production in these cells, suggesting its therapeutic potential in septic shock–induced vascular collapse. In addition, PD 404182 abrogated the formation of tube-like structures by ECs in an in vitro angiogenesis assay, indicating its antiangiogenic potential in diseases characterized by pathologically excessive angiogenesis. Furthermore, we investigated the potential mechanism of inhibition of DDAH by this small molecule and found that PD 404182, which has striking structural similarity to ADMA, could be competed by a DDAH substrate, suggesting that it is a competitive inhibitor. Finally, our enzyme kinetics assay showed time-dependent inhibition, and our inhibitor dilution assay showed that the enzymatic activity of DDAH did not recover significantly after dilution, suggesting that PD 404182 might be a tightly bound, covalent, or an irreversible inhibitor of human DDAH1. This proposal is supported by mass spectrometry studies with PD 404182 and glutathione.

Footnotes

    • Received May 28, 2013.
    • Accepted October 17, 2013.
  • This work was supported in part by the National Institutes of Health National Heart, Lung, and Blood Institute [Grants 1U01HL100397 and K12HL087746] (to J.P.C.); the American Heart Association [Grant 11IRG5180026]; Stanford SPARK Translational Research Program (to Y.T.G.); the National Institutes of Health National Heart, Lung, and Blood Institute [Grant 1K01HL118683-01] (to Y.T.G.); and the Tobacco-Related Disease Research Program of the University of California [Grant 18XT-0098]. Y.T.G. was a recipient of the Stanford School of Medicine Dean’s fellowship [Grant 1049528-149-KAVFB] and the Tobacco-Related Disease Research Program of the University of California [Grant 20FT-0090].

  • Conflict of interest: Y.T.G. and J.P.C. are inventors on patents, owned by Stanford University, that protect the use of agents that modulate the NOS/DDAH pathway for therapeutic application. Ghebremariam YT and Cooke JP (2012) inventors; Stanford University, assignee. Dimethylarginine dimethylaminohydrolase inhibitors and methods of use thereof. U.S. patent WO 2013123033A1. Application Pending.

  • dx.doi.org/10.1124/jpet.113.206847.

  • Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 348 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 348, Issue 1
1 Jan 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Novel and Potent Inhibitor of Dimethylarginine Dimethylaminohydrolase: A Modulator of Cardiovascular Nitric Oxide
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCellular and Molecular

PD 404182 Inhibits Human DDAH1

Yohannes T. Ghebremariam, Daniel A. Erlanson and John P. Cooke
Journal of Pharmacology and Experimental Therapeutics January 1, 2014, 348 (1) 69-76; DOI: https://doi.org/10.1124/jpet.113.206847

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCellular and Molecular

PD 404182 Inhibits Human DDAH1

Yohannes T. Ghebremariam, Daniel A. Erlanson and John P. Cooke
Journal of Pharmacology and Experimental Therapeutics January 1, 2014, 348 (1) 69-76; DOI: https://doi.org/10.1124/jpet.113.206847
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Zebrafish Gstp1 drug response
  • Comparison of Piceatannol with Resveratrol
  • Aldosterone synthesis in the heart
Show more Cellular and Molecular

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics