Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Afobazole Activation of σ-1 Receptors Modulates Neuronal Responses to Amyloid-β25–35

Adam A. Behensky, Ilya E. Yasny, Alexander M. Shuster, Sergei B. Seredenin, Andrey V. Petrov and Javier Cuevas
Journal of Pharmacology and Experimental Therapeutics November 2013, 347 (2) 468-477; DOI: https://doi.org/10.1124/jpet.113.208330
Adam A. Behensky
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ilya E. Yasny
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexander M. Shuster
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sergei B. Seredenin
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrey V. Petrov
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Javier Cuevas
Department of Molecular Pharmacology and Physiology, University of South Florida, College of Medicine, Tampa, Florida (A.A.B., J.C.); IBC Generium, Volginsky, Russian Federation (I.E.Y., A.M.S., A.V.P.); and Zakusov Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russian Federation (S.B.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a continual decline of cognitive function. No therapy has been identified that can effectively halt or reverse its progression. One hallmark of AD is accumulation of the amyloid-β peptide (Aβ), which alone induces neuronal injury via various mechanisms. Data presented here demonstrate that prolonged exposure (1–24 hours) of rat cortical neurons to Aβ25–35 results in an increase in basal intracellular Ca2+ concentration ([Ca2+]i), and that coincubation with the compound afobazole inhibits these [Ca2+]i increases. The effect of afobazole on [Ca2+]i is due to activation of σ-1 receptors but could not be mimicked by a second pan-selective σ receptor agonist, 1,3-di-o-tolylguanidine (DTG). Afobazole was also found to lessen nitric oxide (NO) production in response to Aβ25–35 application but did not affect elevations in reactive oxygen species elicited by the Aβ fragment. The reductions in [Ca2+]i and NO perturbation produced by afobazole were associated with a decrease in neuronal cell death, whereas DTG failed to enhance cell survival. Examining the molecular mechanisms involved in the increased neuronal survival demonstrates that afobazole incubation results in lower expression of the proapoptotic protein Bax and the death protease caspase-3, while at the same time increasing expression of the antiapoptotic protein, Bcl-2. Given the importance of Aβ neurotoxicity in AD etiology, the findings reported here suggest that afobazole may be an effective AD therapeutic agent. Furthermore, σ-1 receptors may represent a useful target for AD treatment, although not all σ ligands appear to be equally beneficial.

Footnotes

    • Received July 25, 2013.
    • Accepted September 4, 2013.
  • This study was supported by a grant from IBC Generium (to J.C.).

  • dx.doi.org/10.1124/jpet.113.208330.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 347 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 347, Issue 2
1 Nov 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Afobazole Activation of σ-1 Receptors Modulates Neuronal Responses to Amyloid-β25–35
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Afobazole Mitigates Aβ25–35-Induced Neurotoxicity

Adam A. Behensky, Ilya E. Yasny, Alexander M. Shuster, Sergei B. Seredenin, Andrey V. Petrov and Javier Cuevas
Journal of Pharmacology and Experimental Therapeutics November 1, 2013, 347 (2) 468-477; DOI: https://doi.org/10.1124/jpet.113.208330

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

Afobazole Mitigates Aβ25–35-Induced Neurotoxicity

Adam A. Behensky, Ilya E. Yasny, Alexander M. Shuster, Sergei B. Seredenin, Andrey V. Petrov and Javier Cuevas
Journal of Pharmacology and Experimental Therapeutics November 1, 2013, 347 (2) 468-477; DOI: https://doi.org/10.1124/jpet.113.208330
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions:
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • VTA Muscarinic M5 Receptors and Effort-Choice Behavior
  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics