Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

Differential Modulation of Brain Nicotinic Acetylcholine Receptor Function by Cytisine, Varenicline, and Two Novel Bispidine Compounds: Emergent Properties of a Hybrid Molecule

Can Peng, Clare Stokes, Yann S. Mineur, Marina R. Picciotto, Chengju Tian, Christoph Eibl, Isabelle Tomassoli, Daniela Guendisch and Roger L. Papke
Journal of Pharmacology and Experimental Therapeutics November 2013, 347 (2) 424-437; DOI: https://doi.org/10.1124/jpet.113.206904
Can Peng
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Clare Stokes
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yann S. Mineur
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marina R. Picciotto
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chengju Tian
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christoph Eibl
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isabelle Tomassoli
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniela Guendisch
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger L. Papke
Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (C.P., C.S., C.T., R.L.P.); Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Y.S.M., M.R.P.); and Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii (C.E., I.T., D.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

Partial agonist therapies for the treatment of nicotine addiction and dependence depend on both agonistic and antagonistic effects of the ligands, and side effects associated with other nAChRs greatly limit the efficacy of nicotinic partial agonists. We evaluated the in vitro pharmacological properties of four partial agonists, two current smoking cessation drugs, varenicline and cytisine, and two novel bispidine compounds, BPC and BMSP, by using defined nAChR subtypes expressed in Xenopus laevis oocytes and human embryonic kidney 293 cells. Similar to varenicline and cytisine, BPC and BMSP are partial agonists of α4β2 nAChRs, although BMSP produced very little activation of these receptors. Unlike varenicline and cytisine, BPC and BMSP showed desired low activity. BPC produced mecamylamine-sensitive steady-state activation of α4* receptors that was not evident with BMSP. We evaluated the modulation of α4*- and α7-mediated responses in rat lateral geniculate nucleus (LGN) neurons and hippocampal stratum radiatum (SR) interneurons, respectively. The LGN neurons were sensitive to a very low concentration of varenicline, and the SR interneuron responses were also sensitive to varenicline at a submicromolar concentration. Although 300 nM BPC strongly inhibited the ACh-evoked responses of LGN neurons, it did not inhibit the α7 currents of SR interneurons. Similar results were observed with 300 nM BMSP. Additionally, the bispidine compounds were efficacious in the mouse tail suspension test, demonstrating that they affect receptors in the brain when delivered systemically. Our data indicate that BPC and BMSP are promising α4β2* partial agonists for pharmacotherapeutics.

Footnotes

    • Received May 29, 2013.
    • Accepted August 19, 2013.
  • This work was supported by the National Institutes of Health National Institute of General Medical Sciences [Grant R01-GM57481]; by the National Institutes of Health National Institute of Mental Health [Grant MH077681] (Y.S.M. and M.R.P.); by the National Institutes of Health National Center for Research Resources [Grant 5P20RR016467] (to C.E., I.T., and D.G.); and by James and Esther King Biomedical Research KG12.

  • dx.doi.org/10.1124/jpet.113.206904.

  • ↵Embedded ImageThis article has supplemental material available at jpet.aspetjournals.org.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 347 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 347, Issue 2
1 Nov 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Modulation of Brain Nicotinic Acetylcholine Receptor Function by Cytisine, Varenicline, and Two Novel Bispidine Compounds: Emergent Properties of a Hybrid Molecule
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

Modulation of nAChR Function by Bispidines

Can Peng, Clare Stokes, Yann S. Mineur, Marina R. Picciotto, Chengju Tian, Christoph Eibl, Isabelle Tomassoli, Daniela Guendisch and Roger L. Papke
Journal of Pharmacology and Experimental Therapeutics November 1, 2013, 347 (2) 424-437; DOI: https://doi.org/10.1124/jpet.113.206904

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

Modulation of nAChR Function by Bispidines

Can Peng, Clare Stokes, Yann S. Mineur, Marina R. Picciotto, Chengju Tian, Christoph Eibl, Isabelle Tomassoli, Daniela Guendisch and Roger L. Papke
Journal of Pharmacology and Experimental Therapeutics November 1, 2013, 347 (2) 424-437; DOI: https://doi.org/10.1124/jpet.113.206904
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • VTA Muscarinic M5 Receptors and Effort-Choice Behavior
  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics