Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCellular and Molecular

Survivin Inhibitor YM-155 Sensitizes Tumor Necrosis Factor– Related Apoptosis-Inducing Ligand-Resistant Glioma Cells to Apoptosis through Mcl-1 Downregulation and by Engaging the Mitochondrial Death Pathway

Daniel R. Premkumar, Esther P. Jane, Kimberly A. Foster and Ian F. Pollack
Journal of Pharmacology and Experimental Therapeutics August 2013, 346 (2) 201-210; DOI: https://doi.org/10.1124/jpet.113.204743
Daniel R. Premkumar
Department of Neurosurgery (D.R.P., E.P.J., K.A.F., I.F.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.R.P., E.P.J., I.F.P.), and University of Pittsburgh Cancer Institute Brain Tumor Program (I.F.P.), Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Esther P. Jane
Department of Neurosurgery (D.R.P., E.P.J., K.A.F., I.F.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.R.P., E.P.J., I.F.P.), and University of Pittsburgh Cancer Institute Brain Tumor Program (I.F.P.), Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kimberly A. Foster
Department of Neurosurgery (D.R.P., E.P.J., K.A.F., I.F.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.R.P., E.P.J., I.F.P.), and University of Pittsburgh Cancer Institute Brain Tumor Program (I.F.P.), Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ian F. Pollack
Department of Neurosurgery (D.R.P., E.P.J., K.A.F., I.F.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (D.R.P., E.P.J., I.F.P.), and University of Pittsburgh Cancer Institute Brain Tumor Program (I.F.P.), Pittsburgh, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Induction of apoptosis by the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor therapy. However, not all tumor cells are sensitive to TRAIL, highlighting the need for strategies to overcome TRAIL resistance. Inhibitor of apoptosis family member survivin is constitutively activated in various cancers and blocks apoptotic signaling. Recently, we demonstrated that YM-155 [3-(2-methoxyethyl)-2-methyl-4,9-dioxo-1-(pyrazin-2-ylmethyl)-4,9-dihydro-3H-naphtho[2,3-d]imidazol-1-ium bromide], a small molecule inhibitor, downregulates not only survivin in gliomas but also myeloid cell leukemia sequence 1 (Mcl-1), and it upregulates proapoptotic Noxa levels. Because Mcl-1 and survivin are critical mediators of resistance to various anticancer therapies, we questioned whether YM-155 could sensitize resistant glioma cells to TRAIL. To address this hypothesis, we combined YM-155 with TRAIL and examined the effects on cell survival and apoptotic signaling. TRAIL or YM-155 individually induced minimal killing in highly resistant U373 and LNZ308 cell lines, but combining TRAIL with YM-155 triggered a synergistic proapoptotic response, mediated through mitochondrial dysfunction via activation of caspases-8, -9, -7, -3, poly-ADP-ribose polymerase, and Bid. Apoptosis induced by combination treatments was blocked by caspase-8 and pan-caspase inhibitors. In addition, knockdown of Mcl-1 by RNA interference overcame apoptotic resistance to TRAIL. Conversely, silencing Noxa by RNA interference reduced the combined effects of YM-155 and TRAIL on apoptosis. Mechanistically, these findings indicate that YM-155 plays a role in counteracting glioma cell resistance to TRAIL-induced apoptosis by downregulating Mcl-1 and survivin and amplifying mitochondrial signaling through intrinsic and extrinsic apoptotic pathways. The significantly enhanced antitumor activity of the combination of YM-155 and TRAIL may have applications for therapy of malignant glioma.

Footnotes

    • Received March 12, 2013.
    • Accepted May 28, 2013.
  • This work was supported by National Institutes of Health [Grant P01NS40923] (to I.F.P.); by the Walter L. Copeland fund of the Pittsburgh Foundation (to D.R.P. and K.A.F.); and by a grant from Ian’s Friends Foundation (to I.F.P.) in honor of Ian Yagoda.

  • dx.doi.org/10.1124/jpet.113.204743.

  • Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 346 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 346, Issue 2
1 Aug 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Survivin Inhibitor YM-155 Sensitizes Tumor Necrosis Factor– Related Apoptosis-Inducing Ligand-Resistant Glioma Cells to Apoptosis through Mcl-1 Downregulation and by Engaging the Mitochondrial Death Pathway
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCellular and Molecular

YM-155 Sensitizes Glioma Cells to TRAIL

Daniel R. Premkumar, Esther P. Jane, Kimberly A. Foster and Ian F. Pollack
Journal of Pharmacology and Experimental Therapeutics August 1, 2013, 346 (2) 201-210; DOI: https://doi.org/10.1124/jpet.113.204743

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCellular and Molecular

YM-155 Sensitizes Glioma Cells to TRAIL

Daniel R. Premkumar, Esther P. Jane, Kimberly A. Foster and Ian F. Pollack
Journal of Pharmacology and Experimental Therapeutics August 1, 2013, 346 (2) 201-210; DOI: https://doi.org/10.1124/jpet.113.204743
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Chlorogenic Acid Inhibits Breast Cancer Metastasis
  • SNAP25 and mGluRs Control Pathological Tau Release
  • N-Stearoylethanolamine Inhibits Platelet Reactivity
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics