Abstract
The concept of ligand bias at G protein-coupled receptors broadens the possibilities for agonist activities and provides the opportunity to develop safer, more selective therapeutics. Morphine pharmacology in β-arrestin-2 knockout mice suggested that a ligand that promotes coupling of the μ-opioid receptor (MOR) to G proteins, but not β-arrestins, would result in higher analgesic efficacy, less gastrointestinal dysfunction, and less respiratory suppression than morphine. Here we report the discovery of TRV130 ([(3-methoxythiophen-2-yl)methyl]({2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro[4.5]decan-9-yl]ethyl})amine), a novel MOR G protein-biased ligand. In cell-based assays, TRV130 elicits robust G protein signaling, with potency and efficacy similar to morphine, but with far less β-arrestin recruitment and receptor internalization. In mice and rats, TRV130 is potently analgesic while causing less gastrointestinal dysfunction and respiratory suppression than morphine at equianalgesic doses. TRV130 successfully translates evidence that analgesic and adverse MOR signaling pathways are distinct into a biased ligand with differentiated pharmacology. These preclinical data suggest that TRV130 may be a safer and more tolerable therapeutic for treating severe pain.
Footnotes
All work was funded by Trevena Inc. All authors are present or former employees of Trevena Inc., a privately held drug discovery company.
↵This article has supplemental material available at jpet.aspetjournals.org.
- Received November 5, 2012.
- Accepted January 7, 2013.
- Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|