Abstract
β-Arrestin2 has been reported to play an essential role in analgesic tolerance. Analgesic tolerance without concomitant tolerance to constipation is a limiting side effect of chronic morphine treatment. Because tolerance to morphine develops in the mouse ileum but not the colon, we therefore examined whether the role of β-arrestin2 in the mechanism of morphine tolerance differs in the ileum and colon. In both guinea pig and mouse, chronic in vitro exposure (2 h, 10 μM) to morphine resulted in tolerance development in the isolated ileum but not the colon. The IC50 values for morphine-induced inhibition of electrical field stimulation contraction of guinea pig longitudinal muscle myenteric plexus shifted rightward in the ileum from 5.7 ± 0.08 (n = 9) to 5.45 ± 0.09 (n = 6) (p < 0.001) after morphine exposure. A significant shift was not observed in the colon. Similar differential tolerance was seen between the mouse ileum and the colon. However, tolerance developed in the colon from β-arrestin2 knockout mice. β-Arrestin2 and extracellular signal-regulated kinase 1/2 expression levels were determined further by Western blot analyses in guinea pig longitudinal muscle myenteric plexus. A time-dependent decrease in the expression of β-arrestin2 and extracellular signal-regulated kinase 1/2 occurred in the ileum but not the colon after 2 h of morphine (10 μM) exposure. Naloxone prevented the decrease in β-arrestin2. In the isolated ileum from guinea pigs chronically treated in vivo with morphine for 7 days, neither additional tolerance to in vitro exposure of morphine nor a decrease in β-arrestin2 occurred. We conclude that a decrease in β-arrestin2 is associated with tolerance development to morphine in the gastrointestinal tract.
Footnotes
This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grants R01-DA024009, T32-DA007027, P50-DA005274].
Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.
↵
The online version of this article (available at http://jpet.aspetjournals.org) contains supplemental material.
-
ABBREVIATIONS:
- GRK
- G protein-coupled receptor kinase
- ANOVA
- analysis of variance
- EFS
- electrical field stimulation
- ERK
- extracellular signal-regulated kinase
- GAPDH
- glyceraldehyde-3-phosphate dehydrogenase
- LMMP
- longitudinal muscle myenteric plexus
- TTX
- tetrodotoxin
- Ct
- cycle threshold.
- Received July 22, 2011.
- Accepted November 28, 2011.
- Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|