Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleMetabolism, Transport, and Pharmacogenomics

Involvement of Concentrative Nucleoside Transporter 1 in Intestinal Absorption of Trifluorothymidine, a Novel Antitumor Nucleoside, in Rats

Takashige Okayama, Kunihiro Yoshisue, Keizo Kuwata, Masahito Komuro, Shigeru Ohta and Sekio Nagayama
Journal of Pharmacology and Experimental Therapeutics February 2012, 340 (2) 457-462; DOI: https://doi.org/10.1124/jpet.111.186296
Takashige Okayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kunihiro Yoshisue
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Keizo Kuwata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahito Komuro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shigeru Ohta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sekio Nagayama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

ααα-Trifluorothymidine (TFT), an anticancer nucleoside analog, is a potent thymidylate synthase inhibitor. TFT exerts its antitumor activity primarily by inducing DNA fragmentation after incorporation of the triphosphate form of TFT into the DNA. Although an oral combination of TFT and a thymidine phosphorylase inhibitor has been clinically developed, there is little information regarding TFT absorption. Therefore, we investigated TFT absorption in the rat small intestine. After oral administration of TFT in rats, more than 75% of the TFT was absorbed. To identify the uptake transport system, uptake studies were conducted by using everted sacs prepared from rat small intestines. TFT uptake was saturable, significantly reduced under Na+-free conditions, and strongly inhibited by the addition of an endogenous pyrimidine nucleoside. From these results, we suggested the involvement of concentrative nucleoside transporters (CNTs) in TFT absorption into rat small intestine. In rat small intestines, the mRNAs coding for rat CNT1 (rCNT1) and rCNT2, but not for rCNT3, were predominantly expressed. To investigate the roles of rCNT1 and rCNT2 in TFT uptake, we conducted uptake assays by using Xenopus laevis oocytes injected with rCNT1 complementary RNA (cRNA) and rCNT2 cRNA. TFT uptake by X. laevis oocytes injected with rCNT1 cRNA, and not rCNT2 cRNA, was significantly greater than that by water-injected oocytes. In addition, in situ single-pass perfusion experiments performed using rat jejunum regions showed that thymidine, a substrate for CNT1, strongly inhibited TFT uptake. In conclusion, TFT is absorbed via rCNT1 in the intestinal lumen in rats.

Footnotes

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    http://dx.doi.org/10.1124/jpet.111.186296.

  • ABBREVIATIONS:

    TFT
    ααα-trifluorothymidine
    NT
    nucleoside transporter
    CNT
    concentrative NT
    hCNT
    human CNT
    rCNT
    rat CNT
    ENT
    equilibrative NT
    cRNA
    complementary RNA
    TP
    thymidine phosphorylase
    TPI
    thymidine phosphorylase inhibitor
    2,4-DNP
    2,4-dinitrophenol
    NaN3
    sodium azide
    PCR
    polymerase chain reaction
    Peff
    effective permeability.

  • Received July 24, 2011.
  • Accepted November 9, 2011.
  • Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 340 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 340, Issue 2
1 Feb 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of Concentrative Nucleoside Transporter 1 in Intestinal Absorption of Trifluorothymidine, a Novel Antitumor Nucleoside, in Rats
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleMetabolism, Transport, and Pharmacogenomics

Involvement of CNT1 in Intestinal Absorption of TFT

Takashige Okayama, Kunihiro Yoshisue, Keizo Kuwata, Masahito Komuro, Shigeru Ohta and Sekio Nagayama
Journal of Pharmacology and Experimental Therapeutics February 1, 2012, 340 (2) 457-462; DOI: https://doi.org/10.1124/jpet.111.186296

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleMetabolism, Transport, and Pharmacogenomics

Involvement of CNT1 in Intestinal Absorption of TFT

Takashige Okayama, Kunihiro Yoshisue, Keizo Kuwata, Masahito Komuro, Shigeru Ohta and Sekio Nagayama
Journal of Pharmacology and Experimental Therapeutics February 1, 2012, 340 (2) 457-462; DOI: https://doi.org/10.1124/jpet.111.186296
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • HDL Mimetic 4F Modulates Aβ Distribution in Brain and Plasma
  • AOX1 Inhibition by Gefitinib, Erlotinib, and Metabolites
  • Catalytic Activity of CYP2C9 Variants
Show more Metabolism, Transport, and Pharmacogenomics

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics