Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNeuropharmacology

GABAB Receptor-Positive Modulators: Brain Region-Dependent Effects

Julie G. Hensler, Tushar Advani, Teresa F. Burke, Kejun Cheng, Kenner C. Rice and Wouter Koek
Journal of Pharmacology and Experimental Therapeutics January 2012, 340 (1) 19-26; DOI: https://doi.org/10.1124/jpet.111.186577
Julie G. Hensler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tushar Advani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Teresa F. Burke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kejun Cheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenner C. Rice
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wouter Koek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study examined the positive modulatory properties of 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF) at γ-aminobutyric acid B (GABAB) receptors in different brain regions. Using quantitative autoradiography, we measured GABAB receptor-stimulated binding of guanosine 5′-O-(3-[35S]thiotriphosphate) ([35S]GTPγS) to G proteins in medial prefrontal cortex (mPFC), hippocampus, and cerebellum. CGP7930 and rac-BHFF enhanced baclofen-stimulated [35S]GTPγS binding similarly in mPFC and hippocampus, but were more effective in cerebellum. CGP7930 (100 μM) increased [35S]GTPγS binding stimulated by baclofen (30 μM) from 29 to 241% above basal in mPFC and from 13 to 1530% above basal in cerebellum. Likewise, rac-BHFF (10 μM) increased baclofen-stimulated [35S]GTPγS binding more in cerebellum (from 13 to 1778% above basal) than in mPFC (from 29 to 514% above basal). rac-BHFF (10 μM) in combination with γ-hydroxybutyrate (20 mM) increased [35S]GTPγS binding in cerebellum but not in mPFC. rac-BHFF also enhanced the effects of 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Consistent with its partial agonist properties, CGP35348 stimulated [35S]GTPγS binding in mPFC when given alone (to 18% above basal), but less extensively than baclofen (140% above basal), and antagonized baclofen when given together. CGP35348 (1 mM) in combination with rac-BHFF (100 μM) produced an increase in [35S]GTPγS binding that was larger in cerebellum (from 61 to 1260% above basal) than in mPFC (from 18 to 118% above basal). Taken together, the results show that GABAB receptor-positive modulators enhance [35S]GTPγS binding stimulated by GABAB receptor agonists in a brain region-dependent manner. This regionally selective enhancement is further evidence of pharmacologically distinct GABAB receptor populations, possibly allowing for more selective therapeutic targeting of the GABAB system.

Footnotes

  • This work was supported in part by the National Institutes of Health National Institute on Drug Abuse [Grant DA15692]. The research of the Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism was supported by the National Institutes of Health Intramural Research Programs of the National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    http://dx.doi.org/10.1124/jpet.111.186577.

  • ABBREVIATIONS:

    CGP35348
    3-aminopropyl(diethoxymethyl)phosphinic acid
    CGP7930
    2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol
    rac-BHFF
    (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one
    GHB
    γ-hydroxybutyrate
    DPCPX
    1,3-dipropyl-8-cyclopentylxanthine
    [35S]GTPγS
    guanosine 5′-O-(3-[35S]thiotriphosphate)
    mPFC
    medial prefrontal cortex
    ACC
    anterior cingulate cortex
    KCTD
    potassium channel tetramerization domain-containing
    CHO
    Chinese hamster ovary
    CGP13501
    3,5-bis(1,1-dimethylethyl)-4-hydroxy-α,α-dimethylbenzenepropanal.

  • Received August 1, 2011.
  • Accepted September 26, 2011.
  • U.S. Government work not protected by U.S. copyright
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 340 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 340, Issue 1
1 Jan 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABAB Receptor-Positive Modulators: Brain Region-Dependent Effects
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNeuropharmacology

GABAB Receptor-Positive Modulators: Regional Differences

Julie G. Hensler, Tushar Advani, Teresa F. Burke, Kejun Cheng, Kenner C. Rice and Wouter Koek
Journal of Pharmacology and Experimental Therapeutics January 1, 2012, 340 (1) 19-26; DOI: https://doi.org/10.1124/jpet.111.186577

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNeuropharmacology

GABAB Receptor-Positive Modulators: Regional Differences

Julie G. Hensler, Tushar Advani, Teresa F. Burke, Kejun Cheng, Kenner C. Rice and Wouter Koek
Journal of Pharmacology and Experimental Therapeutics January 1, 2012, 340 (1) 19-26; DOI: https://doi.org/10.1124/jpet.111.186577
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Iclepertin (BI 425809) in schizophrenia-related models
  • D1 agonist vs. methylphenidate on PFC working memory
  • Obesity Thwarts Preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics