Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

Contractions of the Mouse Prostate Elicited by Acetylcholine Are Mediated by M3 Muscarinic Receptors

Carl W. White, Jennifer L. Short, John M. Haynes, Minoru Matsui and Sabatino Ventura
Journal of Pharmacology and Experimental Therapeutics December 2011, 339 (3) 870-877; DOI: https://doi.org/10.1124/jpet.111.186841
Carl W. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jennifer L. Short
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John M. Haynes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Minoru Matsui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sabatino Ventura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Increased smooth muscle tone in the human prostate contributes to the symptoms associated with benign prostatic hyperplasia. In the mouse prostate gland, cholinergic innervation is responsible for a component of the nerve-mediated contractile response. This study investigates the muscarinic receptor subtype responsible for the cholinergic contractile response in the mouse prostate gland. To characterize the muscarinic receptor subtype, mouse prostates taken from wild-type or M3 muscarinic receptor knockout mice were mounted in organ baths. The isometric force that tissues developed in response to electrical-field stimulation or exogenously applied cholinergic agonists in the presence or absence of a range of muscarinic receptor antagonists was evaluated. Carbachol elicited reproducible and concentration-dependent contractions of the isolated mouse prostate, which were antagonized by the presence of muscarinic receptor antagonists. Calculation of antagonist affinities (pA2 values) indicated a rank order of antagonist potencies in the mouse prostate of: darifenacin (9.08) = atropine (9.07) = 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (9.02) > cyclohexyl-hydroxy-phenyl-(3-piperidin-1-ylpropyl)silane (7.85) > cyclohexyl-(4-fluorophenyl)-hydroxy-(3-piperidin-1-ylpropyl)silane (7.39) > himbacine (7.19) > pirenzipine (6.88) > methoctramine (6.20). Furthermore, genetic deletion of the M3 muscarinic receptor inhibited prostatic contractions to electrical-field stimulation or exogenous administration of acetylcholine. In this study we identified that the cholinergic component of contraction in the mouse prostate is mediated by the M3 muscarinic receptor subtype. Pharmacological antagonism of the M3 muscarinic receptor may be a beneficial additional target for the treatment of benign prostatic hyperplasia in the human prostate gland.

Footnotes

  • This work was supported by the ANZ Trustees [Grant 09/3164] (to S.V.) and the National Health and Medical Research Council of Australia [Grant 334136] (to S.V.).

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    doi:10.1124/jpet.111.186841.

  • ABBREVIATIONS:

    M3R
    M3 muscarinic receptor
    4-DAMP
    1,1-dimethyl-4-diphenylacetoxypiperidinium iodide
    ANOVA
    analysis of variance
    HHSiD
    cyclohexyl-hydroxy-phenyl-(3-piperidin-1-ylpropyl)silane
    p-F-HHSiD
    cyclohexyl-(4-fluorophenyl)-hydroxy-(3-piperidin-1-ylpropyl)silane.

  • Received August 10, 2011.
  • Accepted September 1, 2011.
  • Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 339 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 339, Issue 3
1 Dec 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Contractions of the Mouse Prostate Elicited by Acetylcholine Are Mediated by M3 Muscarinic Receptors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

M3 Muscarinic Receptors in the Mouse Prostate

Carl W. White, Jennifer L. Short, John M. Haynes, Minoru Matsui and Sabatino Ventura
Journal of Pharmacology and Experimental Therapeutics December 1, 2011, 339 (3) 870-877; DOI: https://doi.org/10.1124/jpet.111.186841

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleGastrointestinal, Hepatic, Pulmonary, and Renal

M3 Muscarinic Receptors in the Mouse Prostate

Carl W. White, Jennifer L. Short, John M. Haynes, Minoru Matsui and Sabatino Ventura
Journal of Pharmacology and Experimental Therapeutics December 1, 2011, 339 (3) 870-877; DOI: https://doi.org/10.1124/jpet.111.186841
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Cinnabarinic acid protects against NAFLD
  • SGLT-2 inhibition exacerbates hepatic encephalopathy
  • TK1 Mediates the Antitumor Activity of UNM and CCB
Show more Gastrointestinal, Hepatic, Pulmonary, and Renal

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics