Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleDrug Discovery and Translational Medicine

Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents

Yu Sun, Liqun Huang, Gerardo G. Mackenzie and Basil Rigas
Journal of Pharmacology and Experimental Therapeutics September 2011, 338 (3) 775-783; DOI: https://doi.org/10.1124/jpet.111.183533
Yu Sun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liqun Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerardo G. Mackenzie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Basil Rigas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

Abstract

We assessed the relationship between oxidative stress, cytokinetic parameters, and tumor growth in response to novel phospho-nonsteroidal anti-inflammatory drugs (NSAIDs), agents with significant anticancer effects in preclinical models. Compared with controls, in SW480 colon and MCF-7 breast cancer cells, phospho-sulindac, phospho-aspirin, phospho-flurbiprofen, and phospho-ibuprofen (P-I) increased the levels of reactive oxygen and nitrogen species (RONS) and decreased GSH levels and thioredoxin reductase activity, whereas the conventional chemotherapeutic drugs (CCDs), 5-fluorouracil (5-FU), irinotecan, oxaliplatin, chlorambucil, paclitaxel, and vincristine, did not. In both cell lines, phospho-NSAIDs induced apoptosis and inhibited cell proliferation much more potently than CCDs. We then treated nude mice bearing SW480 xenografts with P-I or 5-FU that had an opposite effect on RONS in vitro. Compared with controls, P-I markedly suppressed xenograft growth, induced apoptosis in the xenografts (8.9 ± 2.7 versus 19.5 ± 3.0), inhibited cell proliferation (52.6 ± 5.58 versus 25.8 ± 7.71), and increased urinary F2-isoprostane levels (10.7 ± 3.3 versus 17.9 ± 2.2 ng/mg creatinine, a marker of oxidative stress); all differences were statistically significant. 5-FU's effects on tumor growth, apoptosis, proliferation, and F2-isoprostane were not statistically significant. F2-isoprostane levels correlated with the induction of apoptosis and the inhibition of cell growth. P-I induced oxidative stress only in the tumors, and its apoptotic effect was restricted to xenografts. Our data show that phospho-NSAIDs act against cancer through a mechanism distinct from that of various CCDs, underscore the critical role of oxidative stress in their effect, and indicate that pathways leading to oxidative stress may be useful targets for anticancer strategies.

Footnotes

  • This work was funded by the National Institutes of Health National Cancer Institute [Grants 5R01-CA092423, R01-CA139454, R01-CA154172]; the National Institutes of Health Division of Cancer Prevention and Control [1N01-CN43302WA22]; and the Department of Defense U.S. Army Medical Research Acquisition Activity [Grant W81XWH1010873].

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    doi:10.1124/jpet.111.183533.

  • ↵Embedded Image The online version of this article (available at http://jpet.aspetjournals.org) contains supplemental material.

  • ABBREVIATIONS:

    NSAID
    nonsteroidal anti-inflammatory drug
    RONS
    reactive oxygen and nitrogen species
    CCD
    conventional chemotherapeutic drug
    Trx
    thioredoxin
    TrxR
    Trx reductase
    P-S
    phospho-sulindac
    P-A
    phospho-aspirin
    P-F
    phospho-flurbiprofen
    P-I
    phospho-ibuprofen
    5-FU
    5-fluorouracil
    PBS
    phosphate-buffered saline
    TUNEL
    terminal deoxynucleotidyl transferase dUTP nick-end labeling
    BrdU
    5-bromo-2′-deoxyuridine
    PI
    propidium iodide
    FACS
    fluorescence-activated cell sorting
    DCFDA
    dichlorofluorescin diacetate
    NAC
    N-acetyl cysteine
    ΔΨm
    mitochondrial transmembrane potential
    FITC
    fluorescein isothiocyanate.

  • Received May 9, 2011.
  • Accepted June 3, 2011.
  • Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 338 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 338, Issue 3
1 Sep 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleDrug Discovery and Translational Medicine

Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents

Yu Sun, Liqun Huang, Gerardo G. Mackenzie and Basil Rigas
Journal of Pharmacology and Experimental Therapeutics September 1, 2011, 338 (3) 775-783; DOI: https://doi.org/10.1124/jpet.111.183533

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleDrug Discovery and Translational Medicine

Oxidative Stress Mediates through Apoptosis the Anticancer Effect of Phospho-Nonsteroidal Anti-Inflammatory Drugs: Implications for the Role of Oxidative Stress in the Action of Anticancer Agents

Yu Sun, Liqun Huang, Gerardo G. Mackenzie and Basil Rigas
Journal of Pharmacology and Experimental Therapeutics September 1, 2011, 338 (3) 775-783; DOI: https://doi.org/10.1124/jpet.111.183533
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Antimuscarinic Effects of Mirabegron
  • Apigenin Relieves Hyperlipidemia
  • Exposure-Receptor Occupancy Relationships for mGlu5 NAMs
Show more Drug Discovery and Translational Medicine

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics