Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleToxicology

The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology

Taiza H. Figueiredo, Felicia Qashu, James P. Apland, Vassiliki Aroniadou-Anderjaska, Adriana P. Souza and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics February 2011, 336 (2) 303-312; DOI: https://doi.org/10.1124/jpet.110.171835
Taiza H. Figueiredo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Felicia Qashu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James P. Apland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vassiliki Aroniadou-Anderjaska
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adriana P. Souza
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria F. M. Braga
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The possibility of mass exposure to nerve agents by a terrorist attack necessitates the availability of antidotes that can be effective against nerve agent toxicity even when administered at a relatively long latency after exposure, because medical assistance may not be immediately available. Nerve agents induce status epilepticus (SE), which can cause brain damage or death. Antagonists of kainate receptors that contain the GluK1 (formerly known as GluR5) subunit (GluK1Rs) are emerging as a new potential treatment for SE and epilepsy from animal research, whereas clinical trials to treat pain have shown that the GluK1/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid] is safe and well tolerated. Therefore, we tested whether LY293558 is effective against soman-induced seizures and neuropathology, when administered 1 h after soman exposure, in rats. LY293558 stopped seizures induced by soman and reduced the total duration of SE, monitored by electroencephalographic recordings within a 24 h-period after exposure. In addition, LY293558 prevented neuronal loss in the basolateral amygdala (BLA) and the CA1 hippocampal area on both days 1 and 7 after soman exposure and reduced neuronal degeneration in the CA1, CA3, and hilar hippocampal regions, entorhinal cortex, amygdala, and neocortex on day 1 after exposure and in the CA1, CA3, amygdala, and neocortex on day 7 after exposure. It also prevented the delayed loss of glutamic acid decarboxylase-67 immuno-stained BLA interneurons on day 7 after exposure. LY293558 is a potential new emergency treatment for nerve agent exposure that can be expected to be effective against seizures and brain damage even with late administration.

Footnotes

  • This work was supported by the CounterACT Program, National Institutes of Health Office of the Director through the National Institute of Neurological Disorders and Stroke [Award U01-NS058162-01], and the Defense Threat Reduction Agency-Joint Science and Technology Office, Medical Science and Technology Division [Grant 1.E0021_07_US_C].

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    doi:10.1124/jpet.110.171835.

  • ABBREVIATIONS:

    SE
    status epilepticus
    BLA
    basolateral amygdala
    GluK1R
    GluK1-containing kainate receptor
    FJC
    Fluoro-Jade C
    LY293558
    (3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid
    AMPA
    α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
    EEG
    electroencephalogram
    HI-6
    (1-(2-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium)-2-oxapropane dichloride
    PBS
    phosphate-buffered saline
    GAD-67
    glutamic acid decarboxylase-67
    CE
    coefficient of error
    dH2O
    distilled water
    ANOVA
    analysis of variance
    LSD
    least significant difference
    IQR
    interquartile range.

  • Received June 22, 2010.
  • Accepted October 19, 2010.
  • U.S. Government work not protected by U.S. copyright
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 376 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 376, Issue 2
1 Feb 2021
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleToxicology

The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology

Taiza H. Figueiredo, Felicia Qashu, James P. Apland, Vassiliki Aroniadou-Anderjaska, Adriana P. Souza and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics February 1, 2011, 336 (2) 303-312; DOI: https://doi.org/10.1124/jpet.110.171835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleToxicology

The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology

Taiza H. Figueiredo, Felicia Qashu, James P. Apland, Vassiliki Aroniadou-Anderjaska, Adriana P. Souza and Maria F. M. Braga
Journal of Pharmacology and Experimental Therapeutics February 1, 2011, 336 (2) 303-312; DOI: https://doi.org/10.1124/jpet.110.171835
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Experimental Procedures
    • Results
    • Discussion
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Tolerability profile of a GalNAc3-conjugated ASO in Monkeys
  • Preclinical Safety of Lung Instillation of Thyroid Hormone
  • Nefazodone Inhibits Anaerobic Glycolysis
Show more Toxicology

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics