Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBEHAVIORAL PHARMACOLOGY

Reducing Abuse Liability of GABAA/Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α1 and α2/3 Subtypes

Nancy A. Ator, John R. Atack, Richard J. Hargreaves, H. Donald Burns and Gerard R. Dawson
Journal of Pharmacology and Experimental Therapeutics January 2010, 332 (1) 4-16; DOI: https://doi.org/10.1124/jpet.109.158303
Nancy A. Ator
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John R. Atack
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard J. Hargreaves
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Donald Burns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gerard R. Dawson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Abuse-liability-related effects of subtype-selective GABAA modulators were explored relative to the prototypic benzodiazepine lorazepam. 7-Cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-3-ylmethoxy)-3-phenyl-1,2,4-triazolo[4,3-b]pyridazine (TPA123) has weak partial agonist efficacy at α1-, α2-, α3-, and α5-containing GABAA receptors, whereas 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine (TPA023) has weaker partial agonist efficacy at α2 and α3 and none at α1 and α5 subtypes. For both compounds, preclinical data suggested efficacy as nonsedating anxiolytics. Self-injection of TPA123 (0.0032–0.1 mg/kg) and TPA023 (0.0032–0.32 mg/kg) was compared with lorazepam (0.01–0.32 mg/kg) in baboons. TPA123 and lorazepam maintained self-injection higher than vehicle at two or more doses in each baboon; peak rate of self-injection of lorazepam was higher than TPA123. Self-injected lorazepam and TPA123 also increased rates of concurrently occurring food-maintained behavior. After the availability of self-administered TPA123 doses ended, an effect consistent with a mild benzodiazepine-like withdrawal syndrome occurred. In contrast with lorazepam and TPA123, TPA023 did not maintain self-administration. Positron emission tomography studies showed that TPA023 produced a dose-dependent inhibition in the binding of [11C]flumazenil to the benzodiazepine binding site in the baboon, which was essentially complete (i.e., 100% occupancy) at the highest TPA023 dose (0.32 mg/kg). In a physical dependence study, TPA023 (32 mg/kg/24 h) was delivered as a continuous intragastric drip. Neither flumazenil at 14 days nor stopping TPA023 after 30 to 31 days resulted in the marked withdrawal syndrome characteristic of benzodiazepines in baboons. In the context of other data, elimination of efficacy at the α1 subtype of the GABA/benzodiazepine receptor is not sufficient to eliminate abuse liability but may do so when coupled with reduced α2/3 subtype efficacy.

Footnotes

  • ↵1 Current affiliation: Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium.

  • ↵2 Current affiliation: P1vital, Wokingham, Berkshire, United Kingdom.

  • This work was supported in part by the National Institutes of Health National Institute on Drug Abuse [Grant R01-DA04133] (for the study of lorazepam and manuscript preparation by N.A.A.); Merck Research Laboratories (West Point, PA) for PET studies and blood plasma analyses; and Merck, Sharp & Dohme for behavioral studies with TPA123 and TPA023.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

    doi:10.1124/jpet.109.158303

  • ABBREVIATIONS:

    L-838417
    7-(1,1-dimethylethyl)-6-(2-methyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2,5-difluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine
    TPA123
    7-Cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-3-ylmethoxy)-3-phenyl-1,2,4-triazolo[4,3-b]pyridazine
    TPA023
    7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine
    PET
    positron emission tomography
    FR
    fixed ratio
    TAC
    time-activity curve
    SUV
    standard uptake value
    SB
    specific binding.

    • Received July 4, 2009.
    • Accepted September 28, 2009.
  • © 2010 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 332 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 332, Issue 1
1 Jan 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reducing Abuse Liability of GABAA/Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α1 and α2/3 Subtypes
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBEHAVIORAL PHARMACOLOGY

Reducing Abuse Liability of GABAA/Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α1 and α2/3 Subtypes

Nancy A. Ator, John R. Atack, Richard J. Hargreaves, H. Donald Burns and Gerard R. Dawson
Journal of Pharmacology and Experimental Therapeutics January 1, 2010, 332 (1) 4-16; DOI: https://doi.org/10.1124/jpet.109.158303

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleBEHAVIORAL PHARMACOLOGY

Reducing Abuse Liability of GABAA/Benzodiazepine Ligands via Selective Partial Agonist Efficacy at α1 and α2/3 Subtypes

Nancy A. Ator, John R. Atack, Richard J. Hargreaves, H. Donald Burns and Gerard R. Dawson
Journal of Pharmacology and Experimental Therapeutics January 1, 2010, 332 (1) 4-16; DOI: https://doi.org/10.1124/jpet.109.158303
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Ventilatory effects of fentanyl, heroin, and methamphetamine
  • Cromakalim Prodrugs are Analgesics in Chronic Pain Models
  • Chronic Naltrexone: Opioid-Seeking and Antinociception
Show more Behavioral Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics