Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCELLULAR AND MOLECULAR

Retraction: The Dietary Polyphenols trans-Resveratrol and Curcumin Selectively Bind Human CB1 Cannabinoid Receptors with Nanomolar Affinities and Function as Antagonists/Inverse Agonists

Kathryn A. Seely, Mark S. Levi and Paul L. Prather
Journal of Pharmacology and Experimental Therapeutics July 2009, 330 (1) 31-39; DOI: https://doi.org/10.1124/jpet.109.151654
Kathryn A. Seely
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark S. Levi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul L. Prather
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has been retracted. Please see:

  • Notice of Retraction - December 01, 2009

Abstract

The dietary polyphenols trans-resveratrol [5-[(1E)-2-(4-hydroxyphenyl)ethenyl]-1,3-benzenediol; found in red wine] and curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione] (found in curry powders) exert anti-inflammatory and antioxidant effects via poorly defined mechanisms. It is interesting that cannabinoids, derived from the marijuana plant (Cannabis sativa), produce similar protective effects via CB1 and CB2 receptors. We examined whether trans-resveratrol, curcumin, and ASC-J9 [1,7-bis(3,4-dimethoxyphenyl)-5-hydroxy-1E,4E,6E-heptatriene-3-one] (a curcumin analog) act as ligands at cannabinoid receptors. All three bind to human (h) CB1 and mouse CB1 receptors with nanomolar affinities, displaying only micromolar affinities for hCB2 receptors. Characteristic of inverse agonists, the polyphenols inhibit basal G-protein activity in membranes prepared from Chinese hamster ovary (CHO)-hCB1 cells or mouse brain that is reversed by a neutral CB1 antagonist. Furthermore, they competitively antagonize G-protein activation produced by a CB1 agonist. In intact CHO-hCB1 cells, the polyphenols act as neutral antagonists, producing no effect when tested alone, whereas competitively antagonizing CB1 agonist mediated inhibition of adenylyl cyclase activity. Confirming their neutral antagonist profile in cells, the polyphenols similarly attenuate stimulation of adenylyl cyclase activity produced by a CB1 inverse agonist. In mice, the polyphenols dose-dependently reverse acute hypothermia produced by a CB1 agonist. Upon repeated administration, the polyphenols also reduce body weight in mice similar to that produced by a CB1 antagonist/inverse agonist. Finally, trans-resveratrol and curcumin share common structural motifs with other known cannabinoid receptor ligands. Collectively, we suggest that trans-resveratrol and curcumin act as antagonists/inverse agonists at CB1 receptors at dietary relevant concentrations. Therefore, these polyphenols and their derivatives might be developed as novel, nontoxic CB1 therapeutics for obesity and/or drug dependence.

Footnotes

  • This work was supported by the Amyotrophic Lateral Sclerosis Association [Grant 1311].

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.109.151654.

  • ABBREVIATIONS: ASC-J9, 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxy-1E,4E,6E-heptatriene-3-one; [3H]CP-55,950, (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol; [35S]GTPγS, guanosine 5′-O-(3-[35S]thio)triphosphate; CHO, Chinese hamster ovary; h, human; WIN-55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate; CP-55,940, (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol; ANOVA, analysis of variance; HU-210, (-)-11-hydroxy-δ(8)-tetrahydrocannabinol-dimethylheptyl; AM-251, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide; m, mouse; O-2050, (6aR,10aR)-3-(1-methanesulfonylamino-4-hexyn-6-yl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran; rimonabant, 5-(p-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-piperidinopyrazole-3-carboxamide hydrochloride; AM1241, (R,S)-3-(2-iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole.

  • Received January 29, 2009.
  • Accepted April 8, 2009.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 385 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 385, Issue 1
1 Apr 2023
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retraction: The Dietary Polyphenols trans-Resveratrol and Curcumin Selectively Bind Human CB1 Cannabinoid Receptors with Nanomolar Affinities and Function as Antagonists/Inverse Agonists
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCELLULAR AND MOLECULAR

Retraction: The Dietary Polyphenols trans-Resveratrol and Curcumin Selectively Bind Human CB1 Cannabinoid Receptors with Nanomolar Affinities and Function as Antagonists/Inverse Agonists

Kathryn A. Seely, Mark S. Levi and Paul L. Prather
Journal of Pharmacology and Experimental Therapeutics July 1, 2009, 330 (1) 31-39; DOI: https://doi.org/10.1124/jpet.109.151654

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCELLULAR AND MOLECULAR

Retraction: The Dietary Polyphenols trans-Resveratrol and Curcumin Selectively Bind Human CB1 Cannabinoid Receptors with Nanomolar Affinities and Function as Antagonists/Inverse Agonists

Kathryn A. Seely, Mark S. Levi and Paul L. Prather
Journal of Pharmacology and Experimental Therapeutics July 1, 2009, 330 (1) 31-39; DOI: https://doi.org/10.1124/jpet.109.151654
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Chlorogenic Acid Inhibits Breast Cancer Metastasis
  • SNAP25 and mGluRs Control Pathological Tau Release
  • N-Stearoylethanolamine Inhibits Platelet Reactivity
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics