Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation

Sarah J. Farnsworth, Trent J. Volz, Glen R. Hanson and Annette E. Fleckenstein
Journal of Pharmacology and Experimental Therapeutics March 2009, 328 (3) 807-812; DOI: https://doi.org/10.1124/jpet.108.146159
Sarah J. Farnsworth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Trent J. Volz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glen R. Hanson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Annette E. Fleckenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cocaine is a psychostimulant that inhibits the inward transport of dopamine (DA) via the neuronal DA transporter, thereby increasing DA concentrations in the synaptic cleft. Cocaine administration also causes a redistribution of striatal vesicular monoamine transporter (VMAT)-2-containing vesicles that co-fractionate with synaptosomal membranes after osmotic lysis (referred to herein as membrane-associated vesicles) to a nonmembrane-associated, cytoplasmic subcellular fraction. Although previous studies from our laboratory have focused on the impact of cocaine on cytoplasmic vesicles, the present report describes the pharmacological effects of cocaine on the membrane-associated vesicle population. Results revealed that the redistribution of VMAT-2 and associated vesicles away from synaptosomal membranes is associated with a decrease in total DA transport and DA content in the membrane-associated VMAT-2-containing subcellular fraction. Cocaine also decreases the velocity and magnitude of K+-stimulated exocytotic DA release from whole striatal suspensions. The cocaine-induced VMAT-2 redistribution, decrease in DA release, and decrease in total DA transport are mediated by D2 receptors as these events were prevented by pretreatment with the D2 receptor antagonist, eticlopride [S-(-)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride]. These data suggest that after cocaine administration, D2 receptors are activated because of increased synaptic DA, resulting in a redistribution of DA-containing vesicles away from synaptosomal membranes, thus leading to less DA released after a depolarizing stimulus. These findings provide insight into not only the mechanism of action of cocaine but also mechanisms underlying the regulation of dopaminergic neurons.

Footnotes

  • This work was supported by the National Institutes of Health National Institute on Drug Abuse [Grants DA00869, DA04222, DA13367, DA11389, DA019447, DA00378].

  • doi:10.1124/jpet.108.146159.

  • ABBREVIATIONS: VMAT, vesicular monoamine transporter; DA, dopamine; eticlopride, S-(-)-3-chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2-methoxybenzamide hydrochloride; DAT, dopamine transporter; SCH-23390, R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride; RDE, rotating disk electrode; MPD, methylphenidate; ANOVA, analysis of variance.

    • Received September 16, 2008.
    • Accepted November 25, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 382 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 382, Issue 2
1 Aug 2022
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation

Sarah J. Farnsworth, Trent J. Volz, Glen R. Hanson and Annette E. Fleckenstein
Journal of Pharmacology and Experimental Therapeutics March 1, 2009, 328 (3) 807-812; DOI: https://doi.org/10.1124/jpet.108.146159

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Cocaine Alters Vesicular Dopamine Sequestration and Potassium-Stimulated Dopamine Release: The Role of D2 Receptor Activation

Sarah J. Farnsworth, Trent J. Volz, Glen R. Hanson and Annette E. Fleckenstein
Journal of Pharmacology and Experimental Therapeutics March 1, 2009, 328 (3) 807-812; DOI: https://doi.org/10.1124/jpet.108.146159
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Glycine receptor modulation using monoclonal antibodies
  • Iclepertin (BI 425809) in Schizophrenia-Related Models
  • D1 Agonist Versus Methylphenidate on PFC Working Memory
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics