Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice

Anbrin Masood, Ahmed Nadeem, S. Jamal Mustafa and James M. O'Donnell
Journal of Pharmacology and Experimental Therapeutics August 2008, 326 (2) 369-379; DOI: https://doi.org/10.1124/jpet.108.137208
Anbrin Masood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ahmed Nadeem
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Jamal Mustafa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James M. O'Donnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The pathogenesis of several neuropsychiatric disorders, including anxiety and depression, has been linked to oxidative stress, in part via alterations in cyclic nucleotide signaling. Phosphodiesterase-2 (PDE2), which regulates cGMP and cAMP signaling, may affect anxiety-related behavior through reduction of oxidative stress. The present study evaluated the effects of oxidative stress on behavior and assessed the anxiolytic effects of the PDE2 inhibitor Bay 60-7550 [(2-(3,4-dimethoxybenzyl)-7-{(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl}-5-methyl imidazo-[5,1-f][1,2,4]triazin-4(3H)-one)]. Treatment of mice with l-buthionine-(S,R)-sulfoximine (300 mg/kg), an inducer of oxidative stress, caused anxiety-like behavioral effects in elevated plusmaze, open-field, and hole-board tests through the NADPH oxidase pathway; these effects were antagonized by Bay 60-7550 (3 mg/kg) and apocynin (3 mg/kg), an inhibitor of NADPH oxidase. The Bay 60-7550-mediated decrease in oxidative stress (i.e., superoxide anion and reactive oxygen species generation in cultured neurons and total antioxidant capacity and lipid peroxides in amygdala and hypothalamus) and expression of NADPH oxidase subunits (i.e., p47 phox and gp91 phox expression in amygdala, hypothalamus, and cultured neurons) was associated with increased cGMP and phosphorylation of vasodilator-stimulated phosphoprotein at Ser239, suggesting an important role of cGMP-protein kinase G signaling in reduction of anxiety. Overall, the present results indicate that oxidative stress induces anxiety-like behavior in mice and that PDE2 inhibition reverses it through an increase in cGMP signaling. Thus, PDE2 may be a novel pharmacological target for treatment of anxiety in neuropsychiatric and neurodegenerative disorders that involve oxidative stress.

Footnotes

  • J.M.O. received research support from Memory Pharmaceuticals and Lundbeck Pharmaceuticals. This study was supported by the National Institute of Mental Health (Grants MH040964 and MH051175) and the National Heart, Lung, and Blood Institute (Grant HL027339).

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.108.137208.

  • ABBREVIATIONS: PDE2, phosphodiesterase-2; PKG, protein kinase G; Bay 60-7550, (2-(3,4-dimethoxybenzyl)-7-{(1R)-1-[(1R)-1-hydroxyethyl]-4-phenylbutyl}-5-methyl imidazo[5,1-f][1,2,4]triazin-4(3H)-one); H89, N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline; BSO, l-buthionine-(S,R)-sulfoximine; ROS, reactive oxygen species; MDA, malondialdehyde; TBA, thiobarbituric acid; PCR, polymerase chain reaction; VASP, vasodilator-stimulated phosphoprotein; HPA, hypothalamic-pituitary-adrenal; WST-1, 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt; KT-5823, (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg: 3′,2′,1′-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid, methyl ester.

    • Received January 28, 2008.
    • Accepted May 1, 2008.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 326 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 326, Issue 2
1 Aug 2008
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice

Anbrin Masood, Ahmed Nadeem, S. Jamal Mustafa and James M. O'Donnell
Journal of Pharmacology and Experimental Therapeutics August 1, 2008, 326 (2) 369-379; DOI: https://doi.org/10.1124/jpet.108.137208

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Reversal of Oxidative Stress-Induced Anxiety by Inhibition of Phosphodiesterase-2 in Mice

Anbrin Masood, Ahmed Nadeem, S. Jamal Mustafa and James M. O'Donnell
Journal of Pharmacology and Experimental Therapeutics August 1, 2008, 326 (2) 369-379; DOI: https://doi.org/10.1124/jpet.108.137208
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted tryptamine activity at 5-HT receptors & SERT
  • In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA
  • Kv7 Opener Attenuates Seizures and Cognitive Deficit
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics