Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Involvement of Rat and Human Organic Anion Transporter 3 in the Renal Tubular Secretion of Topotecan [(S)-9-Dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]

Shin-ichi Matsumoto, Kenji Yoshida, Naoki Ishiguro, Tomoji Maeda and Ikumi Tamai
Journal of Pharmacology and Experimental Therapeutics September 2007, 322 (3) 1246-1252; DOI: https://doi.org/10.1124/jpet.107.123323
Shin-ichi Matsumoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenji Yoshida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naoki Ishiguro
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomoji Maeda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ikumi Tamai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Topotecan [(S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride] is primarily excreted into urine in humans, with approximately 49% of the dose recovered as total topotecan (topotecan lactone plus topotecan hydroxyl acid form). The renal elimination of topotecan involves tubular secretion in addition to glomerular filtration, but little is known about the molecular mechanism of the renal tubular secretion. In the present study, we investigated the transport characteristics of topotecan hydroxyl acid across the renal basolateral membrane using rat kidney slices and rat or human transporter-expressing Xenopus laevis oocytes. Pravastatin and probenecid significantly inhibited the uptake of topotecan hydroxyl acid by rat kidney slices with Ki values of 10.6 and 8.1 μM, respectively, and p-aminohippurate was weakly inhibitory at high concentrations, whereas excess tetraethylammonium had no effect. The uptake of topotecan hydroxyl acid by oocytes injected with complementary RNA of either rat or human organic anion transporter 3 (rOAT3 or hOAT3) was greater than that of water-injected oocytes. Kinetic analysis showed that the Km values for rOAT3 and hOAT3 were 21.9 and 56.5 μM, respectively. Neither rOAT1 nor hOAT1 stimulated topotecan hydroxyl acid transport. These results suggest that the urinary excretion of topotecan hydroxyl acid is accounted for by transport via OAT3, as well as glomerular filtration, in both rats and humans; therefore, drug-drug interactions involving OAT3 may cause a change in clearance of topotecan.

Footnotes

  • This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology Japan.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.107.123323.

  • ABBREVIATIONS: Topotecan, (S)-9-dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride; OAT, organic anion transporter; r, rat; PAH, p-aminohippurate; h, human; TEA, tetraethylammonium; PCR, polymerase chain reaction; OCT, organic cation transporter; HPLC, high-performance liquid chromatography; OATP, organic anion-transporting polypeptide; SN-38, 7-ethyl-10-hydroxycamptothecin.

  • Received March 24, 2007.
  • Accepted June 5, 2007.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 376 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 376, Issue 3
1 Mar 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of Rat and Human Organic Anion Transporter 3 in the Renal Tubular Secretion of Topotecan [(S)-9-Dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Involvement of Rat and Human Organic Anion Transporter 3 in the Renal Tubular Secretion of Topotecan [(S)-9-Dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]

Shin-ichi Matsumoto, Kenji Yoshida, Naoki Ishiguro, Tomoji Maeda and Ikumi Tamai
Journal of Pharmacology and Experimental Therapeutics September 1, 2007, 322 (3) 1246-1252; DOI: https://doi.org/10.1124/jpet.107.123323

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Involvement of Rat and Human Organic Anion Transporter 3 in the Renal Tubular Secretion of Topotecan [(S)-9-Dimethylaminomethyl-10-hydroxy-camptothecin hydrochloride]

Shin-ichi Matsumoto, Kenji Yoshida, Naoki Ishiguro, Tomoji Maeda and Ikumi Tamai
Journal of Pharmacology and Experimental Therapeutics September 1, 2007, 322 (3) 1246-1252; DOI: https://doi.org/10.1124/jpet.107.123323
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • GPER Activation Prevented the Development of Acute Colitis
  • RGD Engagement and Downregulation of αvβ6
  • LPA and Renal Disease
Show more Gastrointestinal, Hepatic, Pulmonary, and Renal

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics