Abstract
In t(8;21) acute myeloid leukemia (AML), the AML1/ETO fusion protein promotes leukemogenesis by recruiting class I histone deacetylase (HDAC)-containing repressor complex to the promoter of AML1 target genes. Valproic acid (VPA), a commonly used antiseizure and mood stabilizer drug, has been shown to cause growth arrest and induce differentiation of malignant cells via HDAC inhibition. VPA causes selective proteasomal degradation of HDAC2 but not other class I HDACs (i.e., HDAC 1, 3, and 8). Therefore, we raised the question of whether this drug can effectively target the leukemogenic activity of the AML1/ETO fusion protein that also recruits HDAC1, a key regulator of normal and aberrant histone acetylation. We report here that VPA treatment disrupts the AML1/ETO-HDAC1 physical interaction, stimulates the global dissociation of AML1/ETO-HDAC1 complex from the promoter of AML1/ETO target genes, and induces relocation of both AML1/ETO and HDAC1 protein from nuclear to perinuclear region. Furthermore, we show that mechanistically these effects associate with a significant inhibition of HDAC activity, histone H3 and H4 hyperacetylation, and recruitment of RNA polymerase II, leading to transcriptional reactivation of target genes (i.e., IL-3) otherwise silenced by AML1/ETO fusion protein. Ultimately, these pharmacological effects resulted in significant antileukemic activity mediated by partial cell differentiation and caspase-dependent apoptosis. Taken together, these data support the notion that VPA might effectively target AML1/ETO-driven leukemogenesis through disruption of aberrant HDAC1 function and that VPA should be integrated in novel therapeutic approaches for AML1/ETO-positive AML.
Footnotes
-
This work was supported in part by Grant R01 CA102031 from the National Cancer Institute (Bethesda, MD).
-
Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.
-
doi:10.1124/jpet.106.118406.
-
ABBREVIATIONS: HDAC, histone deacetylase; AML, acute myeloid leukemia; VPA, valproic acid; PBS, phosphate-buffered saline; ChIP, chromatin immunoprecipitation; pol II, polymerase II; PCR, polymerase chain reaction; RT, reverse transcription; PI, propidium iodide; PARP, poly(ADP-ribose) polymerase; DNMT, DNA methyltransferase; MS-275, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)aminomethyl]-benzamide; PML/RARα, promyelocytic leukemia/retinoic acid receptor α.
- Received December 21, 2006.
- Accepted March 22, 2007.
- The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|