Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Nicotinic Regulation of Calcium/Calmodulin-Dependent Protein Kinase II Activation in the Spinal Cord

M. I. Damaj
Journal of Pharmacology and Experimental Therapeutics January 2007, 320 (1) 244-249; DOI: https://doi.org/10.1124/jpet.106.111336
M. I. Damaj
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent studies have implicated the involvement of Ca2+-dependent mechanisms, in particular, calcium/calmodulin-protein kinase II in nicotine-induced antinociception using the tail-flick test. The spinal cord was suggested as a possible site of this involvement. The present study was undertaken to investigate the hypothesis that the β2 nicotinic receptor subunit plays a central role in nicotine-induced spinal antinociception via calcium/calmodulin-dependent calmodulin protein kinase II activation. The antinociceptive effects of i.t. nicotine in the tail-flick test did not significantly differ in wild-type and α7 knockout (KO) animals but were lost in β2 knockout mice. When calcium/calmodulin-dependent calmodulin protein kinase II activity in the lumbar spinal cord after acute i.t. administration of nicotine was investigated in wild-type and β2 and α7 knockout mice, the increase in calcium/calmodulin-dependent calmodulin protein kinase II activity was not significant reduced in α7 KO mice but was eliminated in the β2 KO mice. In addition, L-type calcium channel blockers nimodipine and verapamil but not the N-methyl-d-aspartate antagonist MK-801 (dizocilpine maleate) blocked the increase in the kinase activity induced by nicotine. Taken together, these results are consistent with the hypothesis that increases in intracellular calcium result in activation of calcium-mediated second messengers in the spinal cord that play an important role in nicotine-induced antinociception as measured in the tail-flick test. Furthermore, our findings indicate that nicotinic stimulation of β2-containing acetylcholine nicotinic receptors in the spinal cord can activate calcium/calmodulin-dependent calmodulin protein kinase II and produce nicotinic analgesia, which may require L-type calcium voltage and gated channels but not the intervention of glutamatergic transmission.

Footnotes

  • This work was supported by National Institute on Drug Abuse Grants DA-12610 and DA-05274.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.106.111336.

  • ABBREVIATIONS: nAChR, acetylcholine nicotinic receptor; NMDA, N-methyl-d-aspartate; MK-801, dizocilpine maleate; α-BGTX, α-bungarotoxin; MLA, methyllycaconitine; %MPE, % maximal possible effect; LCC, L-type calcium channel; CREB, cAMP response element-binding protein.

    • Received July 21, 2006.
    • Accepted October 12, 2006.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 382 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 382, Issue 2
1 Aug 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Nicotinic Regulation of Calcium/Calmodulin-Dependent Protein Kinase II Activation in the Spinal Cord
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Nicotinic Regulation of Calcium/Calmodulin-Dependent Protein Kinase II Activation in the Spinal Cord

M. I. Damaj
Journal of Pharmacology and Experimental Therapeutics January 1, 2007, 320 (1) 244-249; DOI: https://doi.org/10.1124/jpet.106.111336

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Nicotinic Regulation of Calcium/Calmodulin-Dependent Protein Kinase II Activation in the Spinal Cord

M. I. Damaj
Journal of Pharmacology and Experimental Therapeutics January 1, 2007, 320 (1) 244-249; DOI: https://doi.org/10.1124/jpet.106.111336
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Glycine receptor modulation using monoclonal antibodies
  • Iclepertin (BI 425809) in Schizophrenia-Related Models
  • D1 Agonist Versus Methylphenidate on PFC Working Memory
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics