Abstract
Tibolone [[7α,17α]-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-yn-3-one] is used to treat climacteric symptoms and prevent osteoporosis. It exerts tissue-selective effects via site-specific metabolism into 3α- and 3β-hydroxymetabolites and a Δ4-isomer. Recombinant human cytosolic aldo-keto reductases 1C1 and 1C2 (AKR1C1 and AKR1C2) produce 3β-hydroxytibolone, and the liver-specific AKR1C4 produces predominantly 3α-hydroxytibolone. These observations may account for the appearance of 3β-hydroxytibolone in target tissues and 3α-hydroxytibolone in the circulation. Using liver autopsy samples (which express AKR1C1-AKR1C4), tibolone was reduced via 3α- and 3β-hydroxysteroid dehydrogenase (HSD) activity. 3β-Hydroxytibolone was exclusively formed in the cytosol and was inhibited by the AKR1C2-specific inhibitor 5β-cholanic acid-3α, 7α-diol. The cytosolic formation of 3α-hydroxytibolone was inhibited by an AKR1C4-selective inhibitor, phenolphthalein. The ratio of these stereoisomers was 4:1 in favor of 3β-hydroxytibolone. In HepG2 cell cytosol and intact cells (which do not express AKR1C4), tibolone was exclusively reduced to 3β-hydroxytibolone and was blocked by the AKR1C1-AKR1C3 inhibitor flufenamic acid. In primary hepatocytes (which express AKR1C1-AKR1C4), time-dependent reduction of tibolone into 3β- and 3α-hydroxytibolone was observed again in a 4:1 ratio. 3β-HSD activity was inhibited by both 5β-cholanic acid-3α,7α-diol and flufenamic acid, implicating a role for AKR1C2 and AKR1C1. By contrast, the formation of 3α-hydroxytibolone was exclusively inhibited by phenolphthalein implicating AKR1C4 in this reaction. 3β- and 3α-Hydroxytibolone were rapidly metabolized into polar metabolites (>85%). The formation of minor amounts of tibolone was also observed followed by AKR1C-catalyzed epimerization. The low hepatic formation of 3α-hydroxytibolone suggests that AKR1C4 is not the primary source of this metabolite and instead it maybe formed by an intestinal or enterobacterial 3α-HSD.
- The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|