Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Inactivation of CYP2A6 and CYP2A13 during Nicotine Metabolism

Linda B. von Weymarn, Kathryn M. Brown and Sharon E. Murphy
Journal of Pharmacology and Experimental Therapeutics January 2006, 316 (1) 295-303; DOI: https://doi.org/10.1124/jpet.105.091306
Linda B. von Weymarn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathryn M. Brown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharon E. Murphy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nicotine is the major addictive agent in tobacco. The primary catalyst of nicotine metabolism in humans is CYP2A6. However, the closely related enzyme CYP2A13 is a somewhat better catalyst. CYP2A13 is an extrahepatic enzyme that is an excellent catalyst of the metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK). Here we report that both CYP2A6 and CYP2A13 were inactivated during nicotine metabolism. Inactivation of both enzymes was dependent on NADPH and increased with time and concentration. Alternate substrates for CYP2A6 and CYP2A13 protected these enzymes from inactivation. Inactivation of CYP2A13 was irreversible upon extensive dialysis and seems to be mechanism-based. The KI of CYP2A13 inactivation by nicotine was 17 μM, the rate of inactivation, kinact, was 0.1 min-1, and the t1/2 was 7 min. However, the loss in enzyme activity occurred after nicotine metabolism was complete, suggesting that a secondary or possible tertiary metabolite of nicotine may be responsible. [5-3H]Nicotine metabolism by CYP2A13 was monitored by radioflow high-pressure liquid chromatography during the course of enzyme inactivation; the major product was the Δ1′(5′)iminium ion. However, cotinine was a significant metabolite even at short reaction times. The metabolism of the nicotine Δ1′(5′)iminium ion to cotinine did not require the addition of aldehyde oxidase. CYP2A13 catalyzed this reaction as well as further metabolism of cotinine to 5′-hydroxycotinine, trans-3′-hydroxycotinine, and N-(hydroxymethyl)-norcotinine as enzyme inactivation occurred. Studies are on-going to identify the metabolite responsible for nicotine-mediated inactivation of CYP2A13.

Footnotes

  • This work was supported by the National Institutes of Health Grant CA-84529.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.091306.

  • ABBREVIATIONS: NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; GSH, glutathione; HPLC, high-performance liquid chromatography; NNN, N′-nitrosonornicotine; TFA, trifluoroacetic acid.

    • Received June 21, 2005.
    • Accepted September 26, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 316 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 316, Issue 1
1 Jan 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inactivation of CYP2A6 and CYP2A13 during Nicotine Metabolism
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Inactivation of CYP2A6 and CYP2A13 during Nicotine Metabolism

Linda B. von Weymarn, Kathryn M. Brown and Sharon E. Murphy
Journal of Pharmacology and Experimental Therapeutics January 1, 2006, 316 (1) 295-303; DOI: https://doi.org/10.1124/jpet.105.091306

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Inactivation of CYP2A6 and CYP2A13 during Nicotine Metabolism

Linda B. von Weymarn, Kathryn M. Brown and Sharon E. Murphy
Journal of Pharmacology and Experimental Therapeutics January 1, 2006, 316 (1) 295-303; DOI: https://doi.org/10.1124/jpet.105.091306
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics