Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Functional Analysis of Organic Cation Transporter 3 Expressed in Human Placenta

Ryoko Sata, Hisakazu Ohtani, Masayuki Tsujimoto, Hideyasu Murakami, Noriko Koyabu, Takanori Nakamura, Takeshi Uchiumi, Michihiko Kuwano, Hideaki Nagata, Kiyomi Tsukimori, Hitoo Nakano and Yasufumi Sawada
Journal of Pharmacology and Experimental Therapeutics November 2005, 315 (2) 888-895; DOI: https://doi.org/10.1124/jpet.105.086827
Ryoko Sata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hisakazu Ohtani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masayuki Tsujimoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyasu Murakami
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Noriko Koyabu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takanori Nakamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takeshi Uchiumi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michihiko Kuwano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideaki Nagata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kiyomi Tsukimori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hitoo Nakano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasufumi Sawada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The aim of this study is to investigate the placental transport mechanism of cationic compounds by comparison of the uptake of an organic cation into human placental basal membrane vesicles (BLMVs) with that into organic cation transporter 3 (OCT3)-expressing cells. Reverse transcription-polymerase chain reaction analysis demonstrated that OCT3 is the only OCT isoform expressed in the human placenta. The function of OCT3 was investigated by measuring the uptake of 1-methyl-4-phenylpyridinium (MPP+) into human embryonic kidney (HEK)293 cells stably expressing OCT3 (HEK/OCT3 cells). The OCT3-mediated uptake of MPP+ was sodium- and chloride-independent and saturable, with a Michaelis constant (Km) of 82.5 μM. The OCT3-mediated uptake was inhibited by various cationic drugs in a concentration-dependent manner but not by anionic compounds, such as p-aminohippuric acid and captopril, or a zwitterion, carnitine. Western blotting analysis of membrane vesicles prepared from human term placenta revealed that OCT3 is expressed only in BLMVs but not in microvillous membrane vesicles. The uptake of MPP+ into BLMVs was membrane potential-dependent and saturable, with a Km value of 51.8 μM, which is similar to that in HEK293/OCT3 cells. The inhibitory spectrum of various compounds on MPP+ uptake by BLMVs was also similar to that in HEK293/OCT3 cells. These results suggest that OCT3 is expressed on the basal membrane of human trophoblast cells and plays an important role in the placental transport of cationic compounds.

Footnotes

  • This study was supported in part by a Grant-in-aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.086827.

  • ABBREVIATIONS: rOCT, rat organic cation transporter; OCT, organic cation transporter; hOCT, human organic cation transporter; BLMV, human placental basolateral membrane vesicle; MPP+, 1-methyl-4-phenylpyridinium; RT-PCR, reverse transcription-polymerase chain reaction; HEK, human embryonic kidney; BBMV, human placental microvillous membrane vesicle; PBS, phosphate-buffered saline; ALP, alkaline phosphatase; ANOVA, analysis of variance; PAH, p-aminohippuric acid.

    • Received March 23, 2005.
    • Accepted August 2, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 377 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 377, Issue 2
1 May 2021
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Analysis of Organic Cation Transporter 3 Expressed in Human Placenta
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Functional Analysis of Organic Cation Transporter 3 Expressed in Human Placenta

Ryoko Sata, Hisakazu Ohtani, Masayuki Tsujimoto, Hideyasu Murakami, Noriko Koyabu, Takanori Nakamura, Takeshi Uchiumi, Michihiko Kuwano, Hideaki Nagata, Kiyomi Tsukimori, Hitoo Nakano and Yasufumi Sawada
Journal of Pharmacology and Experimental Therapeutics November 1, 2005, 315 (2) 888-895; DOI: https://doi.org/10.1124/jpet.105.086827

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Functional Analysis of Organic Cation Transporter 3 Expressed in Human Placenta

Ryoko Sata, Hisakazu Ohtani, Masayuki Tsujimoto, Hideyasu Murakami, Noriko Koyabu, Takanori Nakamura, Takeshi Uchiumi, Michihiko Kuwano, Hideaki Nagata, Kiyomi Tsukimori, Hitoo Nakano and Yasufumi Sawada
Journal of Pharmacology and Experimental Therapeutics November 1, 2005, 315 (2) 888-895; DOI: https://doi.org/10.1124/jpet.105.086827
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics