Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Effect of Morphine on Deep Dorsal Horn Projection Neurons Depends on Spinal GABAergic and Glycinergic Tone: Implications for Reduced Opioid Effect in Neuropathic Pain

Yan-Ping Chen, Shao-Rui Chen and Hui-Lin Pan
Journal of Pharmacology and Experimental Therapeutics November 2005, 315 (2) 696-703; DOI: https://doi.org/10.1124/jpet.105.091314
Yan-Ping Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shao-Rui Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hui-Lin Pan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The μ opioid agonist morphine has distinct effects on spinal dorsal horn neurons in the superficial and deep laminae. However, it is not clear if the inhibitory effect of morphine on dorsal horn projection neurons is secondary to its potentiating effect on inhibitory interneurons. In this study, we tested the hypothesis that removal of GABAergic and glycinergic inhibitory inputs attenuates the effect of morphine on dorsal horn projection neurons and the reduced spinal GABAergic tone contributes to attenuated morphine effect in neuropathic pain. Single-unit activity of deep dorsal horn projection neurons was recorded in anesthetized normal/sham controls and L5 and L6 spinal nerve-ligated rats. Spinal application of 10 μM morphine significantly inhibited the evoked responses of dorsal horn neurons in both normal/sham controls, and this effect was abolished by the specific μ opioid antagonist. However, the effect of morphine on dorsal horn projection neurons was significantly reduced in nerve-injured rats. Furthermore, topical application of the GABAA receptor antagonist bicuculline (20 μM) almost abolished the effect of morphine in normal/sham control rats but did not significantly attenuate the morphine effect in nerve-injured rats. On the other hand, the glycine receptor antagonist strychnine (4 μM) significantly decreased the effect of morphine in both nerve-injured and control animals. These data suggest that the inhibitory effect of opioids on dorsal horn projection neurons depends on GABAergic and glycinergic inputs. Furthermore, reduced GABAergic tone probably contributes to diminished analgesic effect of opioids in neuropathic pain.

Footnotes

  • This study was supported by National Institutes of Health Grants GM64830 and NS45602.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.091314.

  • ABBREVIATIONS: CTAP, H-d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2.

    • Received June 21, 2005.
    • Accepted July 18, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 381 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 381, Issue 2
1 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effect of Morphine on Deep Dorsal Horn Projection Neurons Depends on Spinal GABAergic and Glycinergic Tone: Implications for Reduced Opioid Effect in Neuropathic Pain
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Effect of Morphine on Deep Dorsal Horn Projection Neurons Depends on Spinal GABAergic and Glycinergic Tone: Implications for Reduced Opioid Effect in Neuropathic Pain

Yan-Ping Chen, Shao-Rui Chen and Hui-Lin Pan
Journal of Pharmacology and Experimental Therapeutics November 1, 2005, 315 (2) 696-703; DOI: https://doi.org/10.1124/jpet.105.091314

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Effect of Morphine on Deep Dorsal Horn Projection Neurons Depends on Spinal GABAergic and Glycinergic Tone: Implications for Reduced Opioid Effect in Neuropathic Pain

Yan-Ping Chen, Shao-Rui Chen and Hui-Lin Pan
Journal of Pharmacology and Experimental Therapeutics November 1, 2005, 315 (2) 696-703; DOI: https://doi.org/10.1124/jpet.105.091314
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Antipsychotic-VMAT2 Inhibitor Synergy: Schizophrenia Models
  • Rescue Pharmacology on Disease-Related GRIN Variants
  • Obesity thwarts preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics