Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleTOXICOLOGY

The Effect of CYP2E1-Dependent Oxidant Stress on Activity of Proteasomes in HepG2 Cells

Irina G. Kessova and Arthur I. Cederbaum
Journal of Pharmacology and Experimental Therapeutics October 2005, 315 (1) 304-312; DOI: https://doi.org/10.1124/jpet.105.088047
Irina G. Kessova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arthur I. Cederbaum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A reduction in proteasome activity and accumulation of oxidized proteins may play a role in alcoholic liver disease. The current study assessed proteasome peptidase activities and oxidative modifications of proteasomes during oxidative stress generated by CYP2E1. The model of toxicity by arachidonic acid (AA) and iron [ferric-nitrilotriacetate (Fe-NTA)] in HepG2 cells overexpressing CYP2E1 (E47 cells) and control C34 cells was used. AA/Fe-NTA treatment decreased trypsin-like (T-L) activity of the proteasome in E47 cells but not in C34 cells. This inhibition was abolished by antioxidants. Chymotrypsin-like activity of the proteasome was increased in E47 cells, and activity was not altered by AA/Fe-NTA treatment. There were no changes in content of subunits of 20S proteasomes or 19S regulator ATPase subunits S4 and p42 by AA/Fe-NTA treatment. An increased content of the PA28α subunit of the 11S regulator of proteasomes was detected in E47 cells. In proteasome pellets, the decline of T-L activity was accompanied by increased content of carbonyl adducts, suggesting oxidative modification of proteasomes. Higher levels of ubiquitinated, 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins and lower levels of free ubiquitin were detected in untreated E47 cells in comparison with C34 cells. Accumulation of protein cross-linked, detergent-insoluble aggregates was increased with AA/Fe-NTA treatment in E47 cells. Thus, reactive oxygen species generated upon CYP2E1-dependent oxidative stress mediated a decline in T-L proteasome function, increased carbonyl adducts in proteasomes, and promoted protein aggregate formation; this may alter the balance among protein oxidation, ubiquitination, and degradation.

Footnotes

  • This work was supported by U. S. Public Health Service Grants AA-12757 and AA-06610 from The National Institute on Alcohol Abuse and Alcoholism.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.088047.

  • ABBREVIATIONS: ROS, reactive oxygen species; ChT-L, chymotrypsin-like; AA, arachidonic acid; Fe-NTA, ferric-nitrilotriacetate; LLVY-MCA, Suc-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin; LSTR-MCA, Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; MCA, 7-amino-4-methylcoumarin; BHT, butylated hydroxytoluene; BHA, butylated hydroxyanisole; DPPD, N,N′-diphenyl-p-phenylenediamine; MEM, minimal essential medium; MTT, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; PGPH, peptidylglutamyl-peptide hydrolase; T-L, trypsin-like; PAGE, polyacrylamide gel electrophoresis; HNE, 4-hydroxynonenal; 3NT, 3-nitrotyrosine; Z-LLE-2, Z-Leu-Leu-Glu-7-amido-4-methylcoumarin.

    • Received April 14, 2005.
    • Accepted July 6, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Effect of CYP2E1-Dependent Oxidant Stress on Activity of Proteasomes in HepG2 Cells
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleTOXICOLOGY

The Effect of CYP2E1-Dependent Oxidant Stress on Activity of Proteasomes in HepG2 Cells

Irina G. Kessova and Arthur I. Cederbaum
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 304-312; DOI: https://doi.org/10.1124/jpet.105.088047

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleTOXICOLOGY

The Effect of CYP2E1-Dependent Oxidant Stress on Activity of Proteasomes in HepG2 Cells

Irina G. Kessova and Arthur I. Cederbaum
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 304-312; DOI: https://doi.org/10.1124/jpet.105.088047
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Nafamostat is a Potent Human Diamine Oxidase Inhibitor
  • Chemoproteomics Investigation of Testicular Toxicity with BTK Inhibitor
  • Bosentan Alters Bile Salt Disposition
Show more Toxicology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics