Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBEHAVIORAL PHARMACOLOGY

Neurotensin-Deficient Mice Have Deficits in Prepulse Inhibition: Restoration by Clozapine but Not Haloperidol, Olanzapine, or Quetiapine

Becky Kinkead, Paul R. Dobner, Vasili Egnatashvili, Tiesha Murray, Nancy Deitemeyer and Charles B. Nemeroff
Journal of Pharmacology and Experimental Therapeutics October 2005, 315 (1) 256-264; DOI: https://doi.org/10.1124/jpet.105.087437
Becky Kinkead
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul R. Dobner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vasili Egnatashvili
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tiesha Murray
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nancy Deitemeyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles B. Nemeroff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Prepulse inhibition (PPI) of the acoustic startle reflex is a commonly used measure of preattentive sensorimotor gating. Disrupted PPI in rodents represents an animal model of the sensorimotor gating deficits characteristic of schizophrenia. The neurotensin (NT) system is implicated in the pathophysiology of schizophrenia, and NT has been hypothesized to act as an endogenous antipsychotic. In rats, NT receptor agonists restore PPI disrupted by dopamine receptor agonists and N-methyl-d-aspartate receptor antagonists, and pretreatment with an NT receptor antagonist blocks restoration of isolation rearing induced deficits in PPI by some antipsychotic drugs. The current studies further scrutinized the role of the NT system in the regulation of PPI and in antipsychotic drug-induced restoration of PPI using NT-null mutant mice (NT-/-). NT-/- mice exhibited significantly higher pulse alone startle amplitudes and disrupted PPI compared with NT+/+ mice. Haloperidol (0.1 mg/kg) and quetiapine (0.5 mg/kg) administered 30 min before PPI testing significantly increased PPI in NT+/+ mice but had no effect on PPI in NT-/- mice. In contrast, clozapine (1.0 mg/kg) significantly increased PPI in both NT-/- and NT+/+ mice, whereas olanzapine (0.5 mg/kg) had no effect on PPI in either NT-/- or NT+/+ mice. In a separate experiment, amphetamine (2.0 mg/kg i.p.) significantly disrupted PPI in NT+/+ mice but not NT-/- mice. These results provide evidence that the effects of antipsychotic drugs (APDs) may be differentially affected by the state of NT neurotransmission and, moreover, that APDs differ in their dependence on an intact NT system.

Footnotes

  • This research was supported by National Institutes of Health Grant MH-39415.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.087437.

  • ABBREVIATIONS: NT, neurotensin; NT-/-, neurotensin-null mutant mice; SR48692, 2-{[1-(-7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole-3-carbonyl]amino}adamantane-2-carboxylic acid; SR142948A, 2-{[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino}adamantane-2-carboxylic acid; APD, antipsychotic drug; PPI, prepulse inhibition; PD149163, Lys(CH2NH)Lys-Pro,Trp-tert-Leu-Leu-Oet; NT69L, Nα MeArg-Lys-Pro-neo-Trp-tert-Leu-Leu; ANOVA, analysis of variance; EPS, extrapyramidal side effects.

    • Received April 4, 2005.
    • Accepted June 24, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neurotensin-Deficient Mice Have Deficits in Prepulse Inhibition: Restoration by Clozapine but Not Haloperidol, Olanzapine, or Quetiapine
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBEHAVIORAL PHARMACOLOGY

Neurotensin-Deficient Mice Have Deficits in Prepulse Inhibition: Restoration by Clozapine but Not Haloperidol, Olanzapine, or Quetiapine

Becky Kinkead, Paul R. Dobner, Vasili Egnatashvili, Tiesha Murray, Nancy Deitemeyer and Charles B. Nemeroff
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 256-264; DOI: https://doi.org/10.1124/jpet.105.087437

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleBEHAVIORAL PHARMACOLOGY

Neurotensin-Deficient Mice Have Deficits in Prepulse Inhibition: Restoration by Clozapine but Not Haloperidol, Olanzapine, or Quetiapine

Becky Kinkead, Paul R. Dobner, Vasili Egnatashvili, Tiesha Murray, Nancy Deitemeyer and Charles B. Nemeroff
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 256-264; DOI: https://doi.org/10.1124/jpet.105.087437
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of residues S426 and S430 in cannabinoid tolerance
  • DAT ligands on Cocaine-Food Choice in Monkeys
  • MDPV high-responders to evaluate candidate medications
Show more Behavioral Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics