Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Role and Relevance of Peptide Transporter 2 (PEPT2) in the Kidney and Choroid Plexus: In Vivo Studies with Glycylsarcosine in Wild-Type and PEPT2 Knockout Mice

Scott M. Ocheltree, Hong Shen, Yongjun Hu, Richard F. Keep and David E. Smith
Journal of Pharmacology and Experimental Therapeutics October 2005, 315 (1) 240-247; DOI: https://doi.org/10.1124/jpet.105.089359
Scott M. Ocheltree
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hong Shen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yongjun Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard F. Keep
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The strategic localization of peptide transporter 2 (PEPT2), a proton-coupled oligopeptide transporter, to the apical membrane of epithelial cells in the kidney and choroid plexus suggests that it plays an important role in the disposition of peptides/mimetics in the body. Therefore, the in vivo significance of PEPT2 was investigated in wild-type and PEPT2 null mice following an i.v. bolus dose (0.05 μmol/g body weight) of [14C]glycylsarcosine (GlySar). In PEPT2 null mice, the clearance (total and renal) of GlySar was markedly increased (2-fold), resulting in concomitantly lower systemic concentrations. In addition, renal reabsorption was almost abolished, and GlySar was eliminated by glomerular filtration. Of the 46% of GlySar reabsorbed in wild-type mice, PEPT2 accounted for 86% and PEPT1 accounted for 14% of reabsorbed substrate. Analysis of GlySar uptake in kidney sections revealed that PEPT2 was primarily localized in the outer medullary region. Wild-type mice also had greater choroid plexus concentrations of GlySar and a 5-fold greater choroid plexus/cerebrospinal fluid (CSF) ratio as compared with null mice at 60 min. Null mice exhibited a greater CSF/blood ratio at 60 min (0.9 versus 0.2) and area under the curve (AUC)CSF/AUCblood ratio over 60 min (0.45 versus 0.12), indicating that PEPT2 significantly reduces the exposure of GlySar in CSF. Our in vivo results demonstrate that PEPT2 is the predominant peptide transporter in kidney and that it acts as an efflux transporter in choroid plexus. Thus, PEPT2 may have profound effects on the sensitivity and/or toxicity of peptides and peptide-like drugs.

Footnotes

  • This work was supported in part by Grants R01 GM035498 (to D.E.S.) and R01 NS034709 and P01 HL018575 (to R.F.K.) from the National Institutes of Health. S.M.O. was supported by an American Foundation for Pharmaceutical Education Predoctoral Fellowship and by the Pharmacological Sciences Training Program of the National Institutes of Health Grant T32 GM007767.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.105.089359.

  • ABBREVIATIONS: PEPT, peptide transporter; POT, proton-coupled oligopeptide transporter; PHT, peptide/histidine transporter; CSF, cerebrospinal fluid; BCSFB, blood-cerebrospinal fluid barrier; GlySar, glycylsarcosine; GFR, glomerular filtration rate; PCR, polymerase chain reaction; ER, excretion ratio; AUC, area under the curve.

    • Received May 10, 2005.
    • Accepted June 23, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 315 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 315, Issue 1
1 Oct 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role and Relevance of Peptide Transporter 2 (PEPT2) in the Kidney and Choroid Plexus: In Vivo Studies with Glycylsarcosine in Wild-Type and PEPT2 Knockout Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Role and Relevance of Peptide Transporter 2 (PEPT2) in the Kidney and Choroid Plexus: In Vivo Studies with Glycylsarcosine in Wild-Type and PEPT2 Knockout Mice

Scott M. Ocheltree, Hong Shen, Yongjun Hu, Richard F. Keep and David E. Smith
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 240-247; DOI: https://doi.org/10.1124/jpet.105.089359

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Role and Relevance of Peptide Transporter 2 (PEPT2) in the Kidney and Choroid Plexus: In Vivo Studies with Glycylsarcosine in Wild-Type and PEPT2 Knockout Mice

Scott M. Ocheltree, Hong Shen, Yongjun Hu, Richard F. Keep and David E. Smith
Journal of Pharmacology and Experimental Therapeutics October 1, 2005, 315 (1) 240-247; DOI: https://doi.org/10.1124/jpet.105.089359
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics