Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Delineation of Human Peptide Transporter 1 (hPepT1)-Mediated Uptake and Transport of Substrates with Varying Transporter Affinities Utilizing Stably Transfected hPepT1/Madin-Darby Canine Kidney Clones and Caco-2 Cells

Rajinder K. Bhardwaj, Dea Herrera-Ruiz, Patrick J. Sinko, Olafur S. Gudmundsson and Gregory Knipp
Journal of Pharmacology and Experimental Therapeutics September 2005, 314 (3) 1093-1100; DOI: https://doi.org/10.1124/jpet.105.087148
Rajinder K. Bhardwaj
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dea Herrera-Ruiz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick J. Sinko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Olafur S. Gudmundsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory Knipp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the present investigation, the uptake and transport kinetics of valacyclovir (VACV), 5-aminolevulinic acid (5-ALA), and benzylpenicillin (BENZ) were studied in stably transfected Madin-Darby canine kidney (MDCK)/human peptide transporter 1 (hPepT1)-V5&His clonal cell lines expressing varying levels of epitope-tagged hPepT1 protein (low, medium, and high expression) and in Caco-2 cells to delineate hPepT1-mediated transport kinetics. These compounds were selected due to the fact that they are known PepT1 substrates, yet also have affinity for other transporters. Caco-2 cells, traditionally used for studying peptide-based drug transport, were included for comparison purposes. The time, pH, sodium, and concentration dependence of cellular uptake and permeability were measured using mock, clonal hPepT1-MDCK, and Caco-2 cells. A pH-dependent effect was observed in the hPepT1-expressing clones and Caco-2 cells, with an increase of 1.96-, 1.84-, and 2.05-fold for VACV, 5-ALA, and BENZ uptake, respectively, at pH 6 versus 7.4 in the high-expressing hPepT1 cells. BENZ uptake was significantly decreased in Caco-2 and MDCK cells in Na+-depleted buffer, whereas VACV uptake only decreased in Caco-2 cells. Concentration-dependent uptake studies in the mock-corrected hPepT1-MDCK and Caco-2 cells demonstrated hPepT1 affinity ranking of VACV > 5-ALA > BENZ. The apical-to-basal apparent permeability coefficient (Papp) values of VACV, 5-ALA, and BENZ in mock-corrected hPepT1-MDCK cells showed solely hPepT1-mediated transport in contrast to Caco-2 cells. Lower Km values and higher Papp in Caco-2 cells compared with hPepT1-MDCK cells suggested the involvement of multiple transporters in Caco-2 cells. Thus, hPepT1-MDCK cells corrected for endogenous transporter expression may be a more appropriate model for screening compounds for their affinity to hPepT1.

Footnotes

  • Funding for this research was provided by the National Institute of General Medical Sciences (NIGMS) (RO1-GM65448) and Rutgers University, Ernest Mario School of Pharmacy.

  • doi:10.1124/jpet.105.087148.

  • ABBREVIATIONS: hPepT1, human peptide transporter 1; MDCK, Madin-Darby canine kidney; VACV, valacyclovir; 5-ALA, 5-aminolevulinic acid; BENZ, benzylpenicillin; FBS, fetal bovine serum; MES, 2-(4-morpholino)-ethanesulfonic acid; PIPES, 1,4-piperazine-bis(2-ethanosulfonic acid); AP, apical; BL, basolateral; TEER, transepithelial electrical resistance.

    • Received March 30, 2005.
    • Accepted May 11, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 377 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 377, Issue 2
1 May 2021
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Delineation of Human Peptide Transporter 1 (hPepT1)-Mediated Uptake and Transport of Substrates with Varying Transporter Affinities Utilizing Stably Transfected hPepT1/Madin-Darby Canine Kidney Clones and Caco-2 Cells
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Delineation of Human Peptide Transporter 1 (hPepT1)-Mediated Uptake and Transport of Substrates with Varying Transporter Affinities Utilizing Stably Transfected hPepT1/Madin-Darby Canine Kidney Clones and Caco-2 Cells

Rajinder K. Bhardwaj, Dea Herrera-Ruiz, Patrick J. Sinko, Olafur S. Gudmundsson and Gregory Knipp
Journal of Pharmacology and Experimental Therapeutics September 1, 2005, 314 (3) 1093-1100; DOI: https://doi.org/10.1124/jpet.105.087148

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Delineation of Human Peptide Transporter 1 (hPepT1)-Mediated Uptake and Transport of Substrates with Varying Transporter Affinities Utilizing Stably Transfected hPepT1/Madin-Darby Canine Kidney Clones and Caco-2 Cells

Rajinder K. Bhardwaj, Dea Herrera-Ruiz, Patrick J. Sinko, Olafur S. Gudmundsson and Gregory Knipp
Journal of Pharmacology and Experimental Therapeutics September 1, 2005, 314 (3) 1093-1100; DOI: https://doi.org/10.1124/jpet.105.087148
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics