Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleBEHAVIORAL PHARMACOLOGY

Δ9-Tetrahydrocannbinol Accounts for the Antinociceptive, Hypothermic, and Cataleptic Effects of Marijuana in Mice

S. A. Varvel, D. T. Bridgen, Q. Tao, B. F. Thomas, B. R. Martin and A. H. Lichtman
Journal of Pharmacology and Experimental Therapeutics July 2005, 314 (1) 329-337; DOI: https://doi.org/10.1124/jpet.104.080739
S. A. Varvel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. T. Bridgen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Q. Tao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. F. Thomas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. R. Martin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. H. Lichtman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although it is widely accepted that Δ9-tetrahydrocannabinol (Δ9-THC) is the primary psychoactive constituent of marijuana, questions persist as to whether other components contribute to marijuana's pharmacological activity. The present experiments assessed the cannabinoid activity of marijuana smoke exposure in mice and tested the hypothesis that Δ9-THC mediates these effects through a CB1 receptor mechanism of action. First, the effects of Δ9-THC on analgesia, hypothermia, and catalepsy were compared with those of a marijuana extract with equated Δ9-THC content after either i.v. administration or inhalation exposure. Second, mice were exposed to smoke of an ethanol-extracted placebo plant material or low-grade marijuana (with minimal Δ9-THC but similar levels of other cannabinoids) that were impregnated with varying quantities of Δ9-THC. To assess doses, Δ9-THC levels in the blood and brains of drug-exposed mice were determined following both i.v. and inhalation routes of administration. Both marijuana and Δ9-THC produced comparable levels of antinociception, hypothermia, and catalepsy regardless of the route of administration, and these effects were blocked by pretreatment with the CB1 antagonist SR141716 [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl]. Importantly, the blood and brain levels of Δ9-THC were similar in mice exhibiting similar pharmacological effects, regardless of the presence of non-Δ9-THC marijuana constituents. The present experiments provide evidence that the acute cannabinoid effects of marijuana smoke exposure on analgesia, hypothermia, and catalepsy in mice result from Δ9-THC content acting at CB1 receptors and that the non-Δ9-THC constituents of marijuana (at concentrations relevant to those typically consumed) influence these effects only minimally, if at all.

Footnotes

  • This work was supported by National Institute on Drug Abuse Grant DA02396.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.104.080739.

  • ABBREVIATIONS: Δ9-THC, Δ9-tetrahydrocannabinol; CBD, cannabidiol; CBC, cannnabichromene; CBN, cannabinol; SR141716, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl; ANOVA, analysis of variance; %MPE, percentage of maximum possible effect; LGM, low-grade marijuana.

    • Received November 15, 2004.
    • Accepted April 5, 2005.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 381 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 381, Issue 2
1 May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Δ9-Tetrahydrocannbinol Accounts for the Antinociceptive, Hypothermic, and Cataleptic Effects of Marijuana in Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleBEHAVIORAL PHARMACOLOGY

Δ9-Tetrahydrocannbinol Accounts for the Antinociceptive, Hypothermic, and Cataleptic Effects of Marijuana in Mice

S. A. Varvel, D. T. Bridgen, Q. Tao, B. F. Thomas, B. R. Martin and A. H. Lichtman
Journal of Pharmacology and Experimental Therapeutics July 1, 2005, 314 (1) 329-337; DOI: https://doi.org/10.1124/jpet.104.080739

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleBEHAVIORAL PHARMACOLOGY

Δ9-Tetrahydrocannbinol Accounts for the Antinociceptive, Hypothermic, and Cataleptic Effects of Marijuana in Mice

S. A. Varvel, D. T. Bridgen, Q. Tao, B. F. Thomas, B. R. Martin and A. H. Lichtman
Journal of Pharmacology and Experimental Therapeutics July 1, 2005, 314 (1) 329-337; DOI: https://doi.org/10.1124/jpet.104.080739
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Abuse potential of botanical cannabidiol
  • Efficacy as a determinant of hyperlocomotion by MOR ligands
  • Mu Opioid Receptor Agonist Mixtures
Show more Behavioral Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics