Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex

Fernando J. Nasif, Kyriaki Sidiropoulou, Xiu-Ti Hu and Francis J. White
Journal of Pharmacology and Experimental Therapeutics March 2005, 312 (3) 1305-1313; DOI: https://doi.org/10.1124/jpet.104.075184
Fernando J. Nasif
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kyriaki Sidiropoulou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiu-Ti Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francis J. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although the medial prefrontal cortex (mPFC) plays a critical role in cocaine addiction, the effects of chronic cocaine on mPFC neurons remain poorly understood. Here, we performed visualized current-clamp recordings to determine the effects of repeated cocaine administration on the membrane excitability of mPFC pyramidal neurons in rat brain slices. Following repeated cocaine administration (15 mg/kg/day i.p. for 5 days) with a 3-day withdrawal, alterations in membrane properties, including increased input resistance, reduced intensity of intracellular injected currents required for generation of Na+-dependent spikes (rheobase), and an increased number of spikes evoked by depolarizing current pulses were observed in mPFC neurons. The current-voltage relationship was also altered in cocaine-pretreated neurons showing reduced outward rectification during membrane depolarization and decreased inward rectification during membrane hyperpolarization. Application of the K+ channel blocker Ba2+ depolarized the resting membrane potential (RMP) and enhanced membrane potential response to injection of hyperpolarizing current pulses. However, the effects of Ba2+ on RMP and hyperpolarized membrane potentials were significantly attenuated in cocaine-withdrawn neurons compared with saline-pretreated cells. These findings indicate that repeated cocaine administration increased the excitability of mPFC neurons after a short-term withdrawal, possibly via reducing the activity of the potassium inward rectifiers (Kir) and voltage-gated K+ currents. Similar changes were also observed in cocaine-pretreated mPFC neurons after a long-term (2-3 weeks) withdrawal, revealing a persistent increase in excitability. These alterations in mPFC neuronal excitability may contribute to the development of behavioral sensitization and withdrawal effects following chronic cocaine exposure.

Footnotes

  • This study was supported by United States Public Health Service Grant DA12618, the Research Scientist Development Award DA00456, and the Onasis Benefit Foundation.

  • Part of this work was presented at the Annual Meeting of the Society of Neuroscience, November 2001, San Diego, CA and November 2003, New Orleans, LA.

  • doi:10.1124/jpet.104.075184.

  • ABBREVIATIONS: mPFC, medial prefrontal cortex; VTA, ventral tegmental area; VGKC, voltage-gated outward potassium current; RMP, resting membrane potential; AHP, afterhyperpolarization; aCSF, artificial cerebrospinal fluid; I-V, current-voltage; SAL, saline; COC, cocaine; Kir, potassium inward rectifiers; IKir, inwardly rectifying K+ currents.

    • Received July 29, 2004.
    • Accepted November 30, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 384 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 384, Issue 2
1 Feb 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex

Fernando J. Nasif, Kyriaki Sidiropoulou, Xiu-Ti Hu and Francis J. White
Journal of Pharmacology and Experimental Therapeutics March 1, 2005, 312 (3) 1305-1313; DOI: https://doi.org/10.1124/jpet.104.075184

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Repeated Cocaine Administration Increases Membrane Excitability of Pyramidal Neurons in the Rat Medial Prefrontal Cortex

Fernando J. Nasif, Kyriaki Sidiropoulou, Xiu-Ti Hu and Francis J. White
Journal of Pharmacology and Experimental Therapeutics March 1, 2005, 312 (3) 1305-1313; DOI: https://doi.org/10.1124/jpet.104.075184
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • KRM-II-81 Analogs
  • Substituted tryptamine activity at 5-HT receptors & SERT
  • In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics