Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Depression by Isoflurane of the Action Potential and Underlying Voltage-Gated Ion Currents in Isolated Rat Neurohypophysial Nerve Terminals

Wei Ouyang and Hugh C. Hemmings Jr.
Journal of Pharmacology and Experimental Therapeutics February 2005, 312 (2) 801-808; DOI: https://doi.org/10.1124/jpet.104.074609
Wei Ouyang
Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hugh C. Hemmings Jr.
Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We characterized the effects of the volatile anesthetic isoflurane on the ion currents that contribute to the action potential (AP) in isolated rat neurohypophysial (NHP) nerve terminals using patch-clamp electrophysiology. Mean resting membrane potential and AP amplitude were -62.3 ± 4.1 and 69.2 ± 2.9 mV, respectively, in NHP terminals. Two components of outward K+ current (IK) were identified in voltage-clamp recordings: a transient IK and a sustained IK with minimal inactivation. Some terminals displayed a slowly activating IK, probably the big Ca2+-activated K+ current (BK). Isoflurane reversibly inhibited AP amplitude and increased AP half-width in normal extracellular Ca2+ (2.2 mM). In high extracellular Ca2+ (10 mM), isoflurane also reduced the afterhypolarization peak amplitude. A transient tetrodotoxin-sensitive Na+ current (INa) was the principal current mediating the depolarizing phase of the AP. A slowly inactivating Cd2+-sensitive current (probably a voltagegated Ca2+ current; ICa) followed the initial INa. Isoflurane reversibly inhibited both INa and ICa elicited by a voltage-stimulus based on an averaged AP waveform. The isoflurane IC50 for AP waveform-evoked INa was 0.36 mM. Isoflurane (0.84 ± 0.04 mM) inhibited AP waveform-evoked ICa by 37.5 ± 0.16% (p < 0.05). The isoflurane IC50 for peak IK was 0.83 mM and for sustained IK was 0.73 mM, with no effect on the voltage dependence of activation. The results indicate that multiple voltage-gated ion channels (Na+ > K+ > Ca2+) in NHP terminals, although not typical central nervous system terminals, are inhibited by the volatile general anesthetic isoflurane. The net inhibitory effects of volatile anesthetics on nerve terminal action potentials and excitability result from integrated actions on multiple voltage-gated currents.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 385 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 385, Issue 3
1 Jun 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Depression by Isoflurane of the Action Potential and Underlying Voltage-Gated Ion Currents in Isolated Rat Neurohypophysial Nerve Terminals
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Depression by Isoflurane of the Action Potential and Underlying Voltage-Gated Ion Currents in Isolated Rat Neurohypophysial Nerve Terminals

Wei Ouyang and Hugh C. Hemmings
Journal of Pharmacology and Experimental Therapeutics February 1, 2005, 312 (2) 801-808; DOI: https://doi.org/10.1124/jpet.104.074609

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Depression by Isoflurane of the Action Potential and Underlying Voltage-Gated Ion Currents in Isolated Rat Neurohypophysial Nerve Terminals

Wei Ouyang and Hugh C. Hemmings
Journal of Pharmacology and Experimental Therapeutics February 1, 2005, 312 (2) 801-808; DOI: https://doi.org/10.1124/jpet.104.074609
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • VTA Muscarinic M5 Receptors and Effort-Choice Behavior
  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics