Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Investigation of Efflux Transport of Dehydroepiandrosterone Sulfate and Mitoxantrone at the Mouse Blood-Brain Barrier: A Minor Role of Breast Cancer Resistance Protein

Young-Joo Lee, Hiroyuki Kusuhara, Johan W. Jonker, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics January 2005, 312 (1) 44-52; DOI: https://doi.org/10.1124/jpet.104.073320
Young-Joo Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan W. Jonker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfred H. Schinkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Breast cancer resistance protein (Bcrp/Abcg2) is a new efflux transporter found at the blood-brain barrier (BBB) of humans and pigs. Since it has been hypothesized that Bcrp may act as a new type of efflux transporter at the BBB, we investigated the involvement of Bcrp in the efflux transport of typical substrates, dehydroepiandrosterone sulfate (DHEAS) and mitoxantrone, across the mouse BBB. The expression of Bcrp in mouse brain capillaries was confirmed by quantitative polymerase chain reaction, Western blot, and immunohistochemical analysis. The role of Bcrp as an efflux transporter was evaluated using the in situ brain perfusion method in wild-type and P-glycoprotein (P-gp) knockout mice with or without treatment with GF120918 (Elacridar), an inhibitor of both Bcrp and P-gp. The increased brain uptake of [3H]DHEAS and [3H]mitoxantrone by GF120918 in wild-type and P-gp knockout mice suggested the existence of a GF120918-sensitive and P-gp-independent efflux transporter for DHEAS and mitoxantrone across the BBB. However, the brain uptake of [3H]DHEAS in Bcrp knockout mice was comparable with that in wild-type mice, and the effect of GF120918 was still observed in Bcrp knockout mice. In addition, the brain uptake of [3H]mitoxantrone was also similar in wild-type and Bcrp knockout mice. These results suggest that although BCRP is expressed at the BBB it plays a minor role in active efflux transport of DHEAS and mitoxantrone out of brain and that one or more GF120918-sensitive efflux transporters distinct from BCRP or P-gp contributes to the brain efflux of DHEAS and mitoxantrone.

Footnotes

  • This work was supported by the research grant from the Japan Foundation For Aging and Health, the Society of Japanese Pharmacopoeia, and the Minister of Health, Labor, and Welfare. Part of this study was presented at the 2004 Pharmaceutical Sciences World Congress, Kyoto, Japan; May 29–June 3, 2004.

  • doi:10.1124/jpet.104.073320.

  • ABBREVIATIONS: BBB, blood-brain barrier; BCRP, breast cancer resistance protein; Mdr, multidrug-resistance; P-gp, P-glycoprotein; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; OAT, organic anion transporter(s); OATP, organic anion-transporting polypeptide; GF120918, Elacridar; RT-PCR, reverse transcriptase-polymerase chain reaction; HPRT, hypoxanthine phosphoribosyl-transferase; Mrp, multidrug resistance-associated protein; TBST, Tris-buffered saline/Tween 20; PBS, phosphate-buffered saline; Glut, glucose transporter; BSA, bovine serum albumin; ANOVA; analysis of variance.

    • Received June 27, 2004.
    • Accepted September 22, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 312 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 312, Issue 1
1 Jan 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Investigation of Efflux Transport of Dehydroepiandrosterone Sulfate and Mitoxantrone at the Mouse Blood-Brain Barrier: A Minor Role of Breast Cancer Resistance Protein
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Investigation of Efflux Transport of Dehydroepiandrosterone Sulfate and Mitoxantrone at the Mouse Blood-Brain Barrier: A Minor Role of Breast Cancer Resistance Protein

Young-Joo Lee, Hiroyuki Kusuhara, Johan W. Jonker, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics January 1, 2005, 312 (1) 44-52; DOI: https://doi.org/10.1124/jpet.104.073320

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Investigation of Efflux Transport of Dehydroepiandrosterone Sulfate and Mitoxantrone at the Mouse Blood-Brain Barrier: A Minor Role of Breast Cancer Resistance Protein

Young-Joo Lee, Hiroyuki Kusuhara, Johan W. Jonker, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics January 1, 2005, 312 (1) 44-52; DOI: https://doi.org/10.1124/jpet.104.073320
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics