Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption

Surajit Dey, Sriram Gunda and Ashim K. Mitra
Journal of Pharmacology and Experimental Therapeutics October 2004, 311 (1) 246-255; DOI: https://doi.org/10.1124/jpet.104.069583
Surajit Dey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sriram Gunda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashim K. Mitra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption” - July 01, 2005

Abstract

Efflux pump like P-glycoprotein (P-gp) is known to be a major barrier to drug delivery. Functional P-glycoprotein has been recently identified in cornea and corneal cell lines. Thus, it is probable that P-glycoprotein may restrict in vivo ocular drug absorption, resulting in low ocular bioavailability. Experiments were designed using New Zealand albino (New Zealand White) rabbits to assess inhibitors of P-gp efflux to increase drug absorption. Anesthetized rabbits were given constant topical infusions of [14C]erythromycin in the presence and absence of inhibitors. Testosterone, verapamil, quinidine, and cyclosporine A were selected as P-gp inhibitors. Transport experiments were conducted in Madin-Darby canine kidney cells transfected with the human mdr1 gene (MDCK-MDR1). Erythromycin exhibited significant efflux out of MDCK-MDR1 cells, suggesting that erythromycin is a good substrate for P-gp. Ocular pharmacokinetic studies were conducted using a topical single-dose infusion method. Maximum inhibition of P-gp mediated efflux was observed with 500 μM testosterone. Area under the curve (AUC)0-∞ of erythromycin with 500 μM testosterone was almost 4 times higher than AUC0-∞ without any inhibitor. Rate of elimination (k10) for erythromycin and those with inhibitors was found to be similar (141 ± 23 min), suggesting that elimination pathways were not altered. All the inhibitors were found to be nontoxic. Verapamil also inhibited the efflux pump with moderate change in AUC0-∞ and Cmax compared with control. Thus, P-gp is found to be active in vivo, and it restricts topical erythromycin absorption across the cornea, which can be inhibited by known P-gp inhibitors. Therefore, ocular bioavailability of P-gp substrates can be significantly enhanced by proper selection of P-gp inhibitors.

Footnotes

  • This work was supported by National Institutes of Health Grants R01 EY09171-08 and R01 EY10659-07.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • doi:10.1124/jpet.104.069583.

  • ABBREVIATIONS: P-gp, P-glycoprotein; CsA, cyclosporine A; DPBS, Dulbecco's phosphate-buffered saline; MDCK, Madin-Darby canine kidney; MEM, minimal essential medium; rPCEC, primary culture of rabbit corneal epithelial cells; TEER, transepithelial electrical resistance; AP, apical; BL, basolateral; AUC, area under the curve; MTS, 3-(4,5-dimethlythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; PMS, phenazine methosulfate; bp, base pair(s); RT-PCR, reverse transcriptase-polymerase chain reaction.

    • Received April 6, 2004.
    • Accepted June 2, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 311 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 311, Issue 1
1 Oct 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption

Surajit Dey, Sriram Gunda and Ashim K. Mitra
Journal of Pharmacology and Experimental Therapeutics October 1, 2004, 311 (1) 246-255; DOI: https://doi.org/10.1124/jpet.104.069583

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption

Surajit Dey, Sriram Gunda and Ashim K. Mitra
Journal of Pharmacology and Experimental Therapeutics October 1, 2004, 311 (1) 246-255; DOI: https://doi.org/10.1124/jpet.104.069583
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF + SI
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics