Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier

V. Monnaert, S. Tilloy, H. Bricout, L. Fenart, R. Cecchelli and E. Monflier
Journal of Pharmacology and Experimental Therapeutics August 2004, 310 (2) 745-751; DOI: https://doi.org/10.1124/jpet.104.067512
V. Monnaert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Tilloy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Bricout
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Fenart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Cecchelli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Monflier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cyclodextrins (CDs) can be envisaged to cure some diseases related to the brain, but the behavior of these compounds toward the blood-brain barrier (BBB) remains largely unexplored to envisage such clinical applications. To fulfill this gap, the toxicity and endothelial permeability for native, methylated, and hydroxypropylated α-, β-, and γ-CDs have been studied on an in vitro model of BBB. As shown by the endothelial permeability for sucrose and immunofluorescence stainings, the native CDs are the most toxic CDs (α- > β- > γ-CD). Whereas the chemical modification of β-CD did not affect the toxicity of this CD, differences are observed for the α- and γ-CD. To determine the origin of toxicity, lipid effluxes on the brain capillary endothelial cells were performed in the presence of native CDs. It was found that α-CD removed phospholipids and that β-CD extracted phospholipids and cholesterol. γ-CD was less lipid-selective than the other CDs. Finally, the endothelial permeability of each CD has been determined. Surprisingly, no structure/permeability relationship has been observed according to the nature and chemical modifications of CDs.

Footnotes

  • DOI: 10.1124/jpet.104.067512.

  • ABBREVIATIONS: CD, cyclodextrin; HP, hydroxypropyl; BBB, blood-brain barrier; Me, methyl; DS, degree of substitution; DMEM, Dulbecco's modified Eagle's medium; BCEC, brain capillary endothelial cell; CMF-PBS, calcium and magnesium-free phosphate-buffered saline; PC, phosphatidylcholine; SM, sphingomyelin.

    • Received February 25, 2004.
    • Accepted April 12, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 310 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 310, Issue 2
1 Aug 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier

V. Monnaert, S. Tilloy, H. Bricout, L. Fenart, R. Cecchelli and E. Monflier
Journal of Pharmacology and Experimental Therapeutics August 1, 2004, 310 (2) 745-751; DOI: https://doi.org/10.1124/jpet.104.067512

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier

V. Monnaert, S. Tilloy, H. Bricout, L. Fenart, R. Cecchelli and E. Monflier
Journal of Pharmacology and Experimental Therapeutics August 1, 2004, 310 (2) 745-751; DOI: https://doi.org/10.1124/jpet.104.067512
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • M5 modulation of dopamine release in the striatum
  • Oxidative Stress and Nerve Agent Toxicity
  • PKA Is Responsible for the Presynaptic Inhibition by Xe
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics