Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCELLULAR AND MOLECULAR

Different Regulation of Human δ-Opioid Receptors by SNC-80 [(+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and Endogenous Enkephalins

I. Lecoq, N. Marie, Ph. Jauzac and S. Allouche
Journal of Pharmacology and Experimental Therapeutics August 2004, 310 (2) 666-677; DOI: https://doi.org/10.1124/jpet.103.063958
I. Lecoq
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Marie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ph. Jauzac
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Allouche
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Among the different mechanisms underlying opioid tolerance, receptor desensitization would represent a major cellular adaptation process in which the role of receptor internalization is still a matter of debate. In the present study, we examined desensitization of the human δ-opioid receptor (hDOR) produced by endogenous opioid peptides Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) and Met-enkephalin (Tyr-Gly-Gly-Phe-Met), and the contribution of internalization in this process. Results obtained with natural peptides were compared with those produced by a synthetic opioid agonist, SNC-80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide). After a 30-min treatment, we observed a different regulation of hDOR between agonists. SNC-80 produced a stronger and faster desensitization and was associated with a loss of opioid binding sites by 50%. SNC-80 also caused a marked hDOR down-regulation by 30% as observed by Western blot. Immunocytochemistry revealed that SNC-80 induced a complete redistribution of hDOR from cell surface into intracellular compartments, whereas a partial internalization was visualized upon enkephalin exposure. In constrast, a stronger hDOR recycling and resensitization were measured after enkephalin treatment compared with SNC-80. These data strongly suggested a differential sorting of the internalized receptors caused by enkephalins and SNC-80 that was further confirmed by chloroquine as a lysosomal degradation blocker and monensin as a recycling endosome inhibitor. Finally, by preventing hDOR internalization with 0.5 M sucrose, we demonstrated that hDOR internalization contributes partially to desensitization. In conclusion, hDOR desensitization depends both on its internalization and its sorting either to the recycling pathway or to lysosomes.

Footnotes

  • DOI: 10.1124/jpet.103.063958.

  • ABBREVIATIONS: GPCR, G protein-coupled receptor; MOR, μ-opioid receptor; DPDPE, [d-Pen2,d-Pen5]-enkephalin; deltorphin I, Tyr-d-Ala-Phe-Asp-Val-Val-Gly-NH2; hDOR, human δ-opioid receptor; Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu; Met-enkephalin, Tyr-Gly-Gly-Phe-Met; SNC-80, (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide; DMEM, Dulbecco's modified Eagle's medium; BSA, bovine serum albumin; IBMX, 3-isobutyl-1-methylxanthine; FSK, forskolin; PBS, phosphate-buffered saline; FITC, fluorescein isothiocyanate; mDOR, mouse δ-opioid receptor; ANOVA, analysis of variance; NTI, naltrindole; RB3020, 2-(3-[(1-amino-ethyl)-hydroxy-phosphinyl]-2-biphenyl-4-ylmethyl-propionylamino)-propionic acid; RB101, N-{(R,S)-2-benzyl-3[(S)(2-amino-4-methylthio)butyl dithio]-1-oxopropyl}-l-phenylalanine benzyl ester.

    • Received December 8, 2003.
    • Accepted April 12, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 310 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 310, Issue 2
1 Aug 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Different Regulation of Human δ-Opioid Receptors by SNC-80 [(+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and Endogenous Enkephalins
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCELLULAR AND MOLECULAR

Different Regulation of Human δ-Opioid Receptors by SNC-80 [(+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and Endogenous Enkephalins

I. Lecoq, N. Marie, Ph. Jauzac and S. Allouche
Journal of Pharmacology and Experimental Therapeutics August 1, 2004, 310 (2) 666-677; DOI: https://doi.org/10.1124/jpet.103.063958

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCELLULAR AND MOLECULAR

Different Regulation of Human δ-Opioid Receptors by SNC-80 [(+)-4-[(αR)-α-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and Endogenous Enkephalins

I. Lecoq, N. Marie, Ph. Jauzac and S. Allouche
Journal of Pharmacology and Experimental Therapeutics August 1, 2004, 310 (2) 666-677; DOI: https://doi.org/10.1124/jpet.103.063958
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Detecting Cancer-Immune Intercellular Interactions
  • Role of ERK1/2 Signaling in Stc2-Mediated Protection
  • Topical arsenicals and transcriptional changes in the kidney
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics