Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Amiloride Kills Malignant Glioma Cells Independent of Its Inhibition of the Sodium-Hydrogen Exchanger

Manu Hegde, Jane Roscoe, Peter Cala and Fredric Gorin
Journal of Pharmacology and Experimental Therapeutics July 2004, 310 (1) 67-74; DOI: https://doi.org/10.1124/jpet.103.065029
Manu Hegde
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jane Roscoe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Cala
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fredric Gorin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previously, we demonstrated that malignant glioma cell lines have increased intracellular pH (pHi) as a result of increased activities of the type I sodium/hydrogen exchanger (NHE1). This alkalotic pHi of 7.2 to 7.4 is favorable for augmented glycolysis, DNA synthesis, and cell cycle progression. Conversely, reductions in pHi have been associated with reduced rates of proliferation in transformed cell types. The effects of reducing pHi directly and by NHE1 inhibition on human malignant glioma cells were systematically compared with those on primary rat astrocytes. Neither cariporide, nor direct acidification to pHi 6.9 altered the proliferative rates or viabilities of human U87 or U118 malignant glioma cell lines. However, amiloride significantly impaired glioma cell proliferation and viability while not affecting astrocytes at concentrations (500 μM) that exceeded its inhibition of NHE1 in glioma cells (IC50 = 17 μM). Preventing a reduction of pHi did not alter the drug's antiproliferative and cytotoxic effects on glioma cells. These findings indicated that amiloride's cytotoxic effects on glioma cells are independent of its ability to inhibit NHE1 or to reduce intracellular pHi. The amiloride derivative 2,4 dichlorobenzamil (DCB) inhibits the sodium-calcium exchanger (NCX) and was both antiproliferative and cytotoxic to glioma cells at low doses (20 μM). By contrast, KB-R7943 [(2-[2-[4-nitrobenzyloxy]phenyl]ethyl)-isothioureamethanesulfonate] preferentially blocks sodium-dependent calcium influx by NCX (reverse mode) and was nontoxic to glioma cells. It is proposed that DCB (20 μM) and amiloride (500 μM) impair calcium efflux by NCX, leading to elevations of intracellular calcium that initiate a morphologically necrotic, predominantly caspase-independent glioma cell death.

Footnotes

  • This work was supported by funding from the National Institutes of Health Grants NS40489 and HL31179 and the University of California Cancer Research Coordinating Committee. This work will be submitted for partial fulfillment of the dissertation requirements for Manu Hegde, Ph.D. candidate in the Neuroscience Graduate Group, University of California, Davis.

  • DOI: 10.1124/jpet.103.065029.

  • ABBREVIATIONS: pHi, intracellular pH; NHE1, sodium hydrogen exchanger type 1; NCX, sodium calcium exchanger; DCB, 2,4 dichlorobenzamil; DMSO, dimethyl sulfoxide; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium; PBS-CMF, phosphate-buffered saline-Ca2+ and Mg2+ free; TBS, Tris-buffered saline; BCECF, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM; HR, HEPES Ringer; pHe, extracellular (buffer) pH; [Ca2+]i, intracellular calcium concentration.

    • Received December 30, 2003.
    • Accepted March 9, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 310 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 310, Issue 1
1 Jul 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amiloride Kills Malignant Glioma Cells Independent of Its Inhibition of the Sodium-Hydrogen Exchanger
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Amiloride Kills Malignant Glioma Cells Independent of Its Inhibition of the Sodium-Hydrogen Exchanger

Manu Hegde, Jane Roscoe, Peter Cala and Fredric Gorin
Journal of Pharmacology and Experimental Therapeutics July 1, 2004, 310 (1) 67-74; DOI: https://doi.org/10.1124/jpet.103.065029

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Amiloride Kills Malignant Glioma Cells Independent of Its Inhibition of the Sodium-Hydrogen Exchanger

Manu Hegde, Jane Roscoe, Peter Cala and Fredric Gorin
Journal of Pharmacology and Experimental Therapeutics July 1, 2004, 310 (1) 67-74; DOI: https://doi.org/10.1124/jpet.103.065029
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • miR-9-3p and -5p Mediate Drug Resistance by Targeting TOP2β
  • Ocular Palonosetron for Prevention of Nausea and Vomiting
  • PTP4A3 and ovarian cancer
Show more Chemotherapy, Antibiotics, and Gene Therapy

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics