Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

ReN-1869 [(R)-1-(3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-propyl)-3-piperidine Carboxylic Acid], a Novel Histamine H1 Receptor Antagonist, Produces Potent and Selective Antinociceptive Effects on Dorsal Horn Neurons after Inflammation and Neuropathy

R. Suzuki, M. Edwards and A. H. Dickenson
Journal of Pharmacology and Experimental Therapeutics June 2004, 309 (3) 1230-1238; DOI: https://doi.org/10.1124/jpet.103.063511
R. Suzuki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Edwards
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. H. Dickenson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We characterized the effect of a novel selective histamine H1 receptor antagonist, (R)-1-(3-(10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5-ylidene)-1-propyl)-3-piperidine carboxylic acid (ReN-1869), on the responses of dorsal horn neurons in anesthetized rats after carrageenan induced-inflammation and peripheral neuropathy (L5/6 spinal nerve ligation; SNL). ReN-1869 was administered systemically (0.1-4 mg/kg), and drug effects were assessed using a wide range of peripheral electrical and natural stimuli (brush, von Frey filaments, and heat). Comparisons were made between unoperated naive groups and either carrageenan inflamed or SNL rats. ReN-1869 produced little effect on the electrically evoked responses (wind-up, Aβ-, Aδ-, and C-fiber-evoked responses); however, it significantly attenuated neuronal responses to noxious heat in carrageenan and SNL rats. A robust effect was seen with the low-threshold mechanical punctate (von Frey 9 g) stimuli, which were selectively inhibited by ReN-1869 after tissue and nerve injury. These inhibitory actions were in marked contrast to the naive animal group, where only nonsignificant effects were observed. To investigate whether the actions of ReN-1869 are mediated via the antagonism of histamine H1 receptors, the effects of this novel compound were compared with that of another H1 receptor antagonist, mepyramine (1-20 mg/kg). Systemic mepyramine produced strong inhibitions of the 9-g von Frey-evoked responses in carrageenan and SNL rats. The similar pharmacological profile of these two compounds suggests for a similar mechanism of action. We propose that ReN-1869 may represent a novel agent for the treatment of certain modalities of persistent pain states, in particular for the treatment of mechanical allodynia.

Footnotes

  • This work was supported by Overseas Research Scholarship.

  • DOI: 10.1124/jpet.103.063511.

  • ABBREVIATIONS: SNL, spinal nerve ligation; PHN, postherpetic neuralgia.

    • Received November 25, 2003.
    • Accepted February 26, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 309 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 309, Issue 3
1 Jun 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
ReN-1869 [(R)-1-(3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-propyl)-3-piperidine Carboxylic Acid], a Novel Histamine H1 Receptor Antagonist, Produces Potent and Selective Antinociceptive Effects on Dorsal Horn Neurons after Inflammation and…
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

ReN-1869 [(R)-1-(3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-propyl)-3-piperidine Carboxylic Acid], a Novel Histamine H1 Receptor Antagonist, Produces Potent and Selective Antinociceptive Effects on Dorsal Horn Neurons after Inflammation and Neuropathy

R. Suzuki, M. Edwards and A. H. Dickenson
Journal of Pharmacology and Experimental Therapeutics June 1, 2004, 309 (3) 1230-1238; DOI: https://doi.org/10.1124/jpet.103.063511

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

ReN-1869 [(R)-1-(3-(10,11-Dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-propyl)-3-piperidine Carboxylic Acid], a Novel Histamine H1 Receptor Antagonist, Produces Potent and Selective Antinociceptive Effects on Dorsal Horn Neurons after Inflammation and Neuropathy

R. Suzuki, M. Edwards and A. H. Dickenson
Journal of Pharmacology and Experimental Therapeutics June 1, 2004, 309 (3) 1230-1238; DOI: https://doi.org/10.1124/jpet.103.063511
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Glycine receptor modulation using monoclonal antibodies
  • Iclepertin (BI 425809) in Schizophrenia-Related Models
  • D1 Agonist Versus Methylphenidate on PFC Working Memory
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics