Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Gastric Tolerability and Prolonged Prostaglandin Inhibition in the Brain with a Nitric Oxide-Releasing Flurbiprofen Derivative, NCX-2216 [3-[4-(2-Fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester]

John L. Wallace, Marcelo N. Muscará, Gilberto de Nucci, Stella Zamuner, Giuseppe Cirino, Piero del Soldato and Ennio Ongini
Journal of Pharmacology and Experimental Therapeutics May 2004, 309 (2) 626-633; DOI: https://doi.org/10.1124/jpet.103.063453
John L. Wallace
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcelo N. Muscará
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilberto de Nucci
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stella Zamuner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giuseppe Cirino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Piero del Soldato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ennio Ongini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

NCX-2216 [3-[4-(2-fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester] is an NO-releasing flurbiprofen derivative that also contains a ferulic acid (antioxidant) moiety. NCX-2216 has been shown to be effective in reducing β-amyloid deposition in a transgenic mouse model of Alzheimer's disease. The tolerability of this compound in the stomach and its ability to suppress prostaglandin synthesis in the brain are not known. The purpose of this study was to assess the contribution of nitric oxide (NO) and ferulic acid to the pharmacological properties of NCX-2216 versus flurbiprofen; thus, we compared their gastric tolerability and suppression of prostaglandin synthesis, peripherally and centrally. Oral flurbiprofen produced extensive gastric damage and suppressed gastric prostaglandin synthesis. In contrast, while suppressing prostaglandin production, equimolar doses of NCX-2216 did not cause detectable gastric injury. The NO-releasing moiety of NCX-2216 (but not the ferulic acid moiety) was crucial for the gastric safety of this compound. NCX-2216 substantially inhibited prostanoid synthesis despite not being detectable in plasma and despite producing only low amounts of flurbiprofen in plasma and in the brain. Inhibition of brain prostaglandin synthesis by NCX-2216 (22 mg/kg) persisted for a much longer period of time (up to 48 h) than was seen with flurbiprofen (≤12 h). These results demonstrate that a single administration of NCX-2216 can produce prolonged suppression of brain prostaglandin synthesis without causing gastric injury. It is likely that an active metabolite of NCX-2216 contributes to the suppression of cyclooxygenase activity. NCX-2216 may represent an attractive alternative to conventional nonsteroidal anti-inflammatory drugs for long-term treatment of a variety of inflammatory disorders, especially those occurring in the central nervous system.

Footnotes

  • This work was supported by a grant from the Canadian Institutes of Health Research (CIHR). Dr. Wallace is an Alberta Heritage Foundation for Medical Research Senior Scientist. Dr. Zamuner is supported by a fellowship from the Canadian Association of Gastroenterology/CIHR/Janssen Pharmaceutica.

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • DOI: 10.1124/jpet.103.063453.

  • ABBREVIATIONS: NSAID, nonsteroidal anti-inflammatory drug; NO, nitric oxide; NCX-2216, 3-[4-(2-fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester; ELISA, enzyme-linked immunosorbent assay; COX, cyclooxygenase; NCX-2111, (S)-N-acetyl-S-[α-methyl-4-(2-methylpropyl)benzeneacetyl]cysteine-4-(nitroxy) butyl ester; ES, electrospray; CSF, cerebrospinal fluid; PGE2, prostaglandin E2; DPPH, 1,1-diphenyl-2-picrylhydrazyl; PG, prostaglandin; NCX 2057, 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid 4-(nitrooxy)butyl ester; NCX 2226, 3-[4-[2-fluoro-α-methyl-(1,1′-biphenyl)-4-acetyloxy]-3-methoxyphenyl]-2-propenoic acid.

    • Received November 24, 2003.
    • Accepted January 29, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 309 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 309, Issue 2
1 May 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gastric Tolerability and Prolonged Prostaglandin Inhibition in the Brain with a Nitric Oxide-Releasing Flurbiprofen Derivative, NCX-2216 [3-[4-(2-Fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester]
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Gastric Tolerability and Prolonged Prostaglandin Inhibition in the Brain with a Nitric Oxide-Releasing Flurbiprofen Derivative, NCX-2216 [3-[4-(2-Fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester]

John L. Wallace, Marcelo N. Muscará, Gilberto de Nucci, Stella Zamuner, Giuseppe Cirino, Piero del Soldato and Ennio Ongini
Journal of Pharmacology and Experimental Therapeutics May 1, 2004, 309 (2) 626-633; DOI: https://doi.org/10.1124/jpet.103.063453

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Gastric Tolerability and Prolonged Prostaglandin Inhibition in the Brain with a Nitric Oxide-Releasing Flurbiprofen Derivative, NCX-2216 [3-[4-(2-Fluoro-α-methyl-[1,1′-biphenyl]-4-acetyloxy)-3-methoxyphenyl]-2-propenoic acid 4-nitrooxy butyl ester]

John L. Wallace, Marcelo N. Muscará, Gilberto de Nucci, Stella Zamuner, Giuseppe Cirino, Piero del Soldato and Ennio Ongini
Journal of Pharmacology and Experimental Therapeutics May 1, 2004, 309 (2) 626-633; DOI: https://doi.org/10.1124/jpet.103.063453
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Materials
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Lipopolysaccharide Induces Epithelium- and Prostaglandin E2-Dependent Relaxation of Mouse Isolated Trachea through Activation of Cyclooxygenase (COX)-1 and COX-2
  • Cannabinoid-Mediated Elevation of Intracellular Calcium: A Structure-Activity Relationship
  • Protease-Activated Receptor-2 Peptides Activate Neurokinin-1 Receptors in the Mouse Isolated Trachea
Show more INFLAMMATION AND IMMUNOPHARMACOLOGY

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics