Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Hammerhead Ribozyme-Mediated Sensitization of Human Tumor Cells after Treatment with 1,3-Bis(2-chloroethyl)-1-nitrosourea

Qiwei Zhang, David W. Ohannesian and Leonard C. Erickson
Journal of Pharmacology and Experimental Therapeutics May 2004, 309 (2) 506-514; DOI: https://doi.org/10.1124/jpet.103.061507
Qiwei Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David W. Ohannesian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leonard C. Erickson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

O6-Methylguanine DNA methyltransferase (MGMT) protects tumor cells from the cytotoxic effects of DNA-alkylating agents such as 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU). To improve the therapeutic index of BCNU, biochemical strategies to inhibit MGMT temporarily by systemic administration of small molecules, such as O6-benzylguanine, have been developed and are showing promise in clinical trials. In this study, an alternative molecular strategy for modulating BCNU resistance was explored using hammerhead ribozymes (Rz) designed to degrade the long-lived MGMT mRNA. We had previously identified several ribozymes capable of decreasing MGMT levels in HeLa cells. Using colony formation assays, the BCNU-induced cell kill was shown to be increased by 1 to 3 logs in the HeLa/Rz clones compared with wild-type HeLa cells at a BCNU dose of 100 μM. In the current study, 10 randomly selected clones of Rz161, 212, and a reconstructed Rz178/212 were assayed for MGMT activity, MGMT mRNA, and sensitivity to BCNU. The 30 clones exhibited almost identical results in the three assays, i.e., nearly undetectable MGMT activity, greatly diminished MGMT mRNA, and comparable sensitivity to BCNU using the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) viability assay. The effects of catalytically inactive ribozymes carrying a single point mutation were compared with their active counterparts in vitro and in stably transfected clones to determine whether antisense inhibition was a contributor to the inhibition of MGMT activity we observed. Collectively, these results suggest that the hammerhead ribozymes characterized in this study will be excellent candidates for future gene therapy approaches targeting MGMT.

Footnotes

  • This work was supported by National Cancer Institute Grants CA45628 (to L.C.E.) and CA 81683 (to D.W.O.) and a fellowship from the Indiana University Department of Pharmacology and Toxicology (to Q.Z.).

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • DOI: 10.1124/jpet.103.061507.

  • ABBREVIATIONS: CENU, chloroethylnitrosourea; BCNU, 1,3-bis(2-chloroethyl)-1-nitrosourea; MGMT, O6-methylguanine DNA methyltransferase; Rz, ribozyme; InacRz, inactive ribozyme; WST-1, 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate; PBS, phosphate-buffered saline; HEX, 5′-hexachloro-fluorescein phosphoramidite; bp, base pair(s); GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PAGE, polyacrylamide gel electrophoresis; nt, nucleotide; Mer, methylation repair.

    • Received October 31, 2003.
    • Accepted January 16, 2004.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 309 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 309, Issue 2
1 May 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hammerhead Ribozyme-Mediated Sensitization of Human Tumor Cells after Treatment with 1,3-Bis(2-chloroethyl)-1-nitrosourea
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Hammerhead Ribozyme-Mediated Sensitization of Human Tumor Cells after Treatment with 1,3-Bis(2-chloroethyl)-1-nitrosourea

Qiwei Zhang, David W. Ohannesian and Leonard C. Erickson
Journal of Pharmacology and Experimental Therapeutics May 1, 2004, 309 (2) 506-514; DOI: https://doi.org/10.1124/jpet.103.061507

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Hammerhead Ribozyme-Mediated Sensitization of Human Tumor Cells after Treatment with 1,3-Bis(2-chloroethyl)-1-nitrosourea

Qiwei Zhang, David W. Ohannesian and Leonard C. Erickson
Journal of Pharmacology and Experimental Therapeutics May 1, 2004, 309 (2) 506-514; DOI: https://doi.org/10.1124/jpet.103.061507
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Time-to-Event Analysis of Paclitaxel Peripheral Neuropathy
  • Lysosomal Biogenesis and Hydroxychloroquine Disposition
  • MEK for ALK-Positive Lung Cancer
Show more Chemotherapy, Antibiotics, and Gene Therapy

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics