Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Receptor/Gene-Mediated Pharmacodynamic Effects of Methylprednisolone on Phosphoenolpyruvate Carboxykinase Regulation in Rat Liver

Jin Y. Jin, Debra C. DuBois, Richard R. Almon and William J. Jusko
Journal of Pharmacology and Experimental Therapeutics April 2004, 309 (1) 328-339; DOI: https://doi.org/10.1124/jpet.103.061515
Jin Y. Jin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Debra C. DuBois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard R. Almon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William J. Jusko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting enzyme for gluconeogenesis. To investigate underlying mechanisms of corticosteroid (CS) action in regulating glucose, temporal patterns of hepatic PEPCK gene expression, enzyme activity, and cAMP content were examined in adrenalectomized rats receiving acute and chronic methylprednisolone (MPL) treatments. After single MPL intravenous doses, PEPCK mRNA showed a fast increase, reaching a maximum at around 0.75 h, which was followed by an immediate decline to below baseline after 4 h, an apparent acute tolerance/rebound phenomenon. However, PEPCK enzyme showed continuous hyperactivity for over 72 h. This may be the result of generation of cAMP, an important inducer of PEPCK activity, which peaked at around 6 h. During 7-day subcutaneous infusion of MPL, PEPCK mRNA showed profiles consistent with single-dose results, whereas PEPCK activity increased to a comparable maximum followed by a slow decline. However, the extent of cAMP induction was markedly higher during infusion, which could be attributed to amplification of cAMP synthesis and/or a stabilizing effect of MPL on cAMP degradation. A pharmacokinetic/pharmacodynamic model was developed based on receptor/gene mechanisms of CS action. It successfully described the dual effects of MPL on regulating PEPCK message and the post-transcriptional control by cAMP. Our results exemplify the importance of the extent and duration of steroid exposure in mediating pharmacological effects. The model provides quantitation of multiple controlling factors regulating PEPCK and presents insights into its function in glucose metabolism.

Footnotes

  • Financial support for this research was provided by Grant GM24211 from the National Institutes of Health.

  • DOI: 10.1124/jpet.103.061515.

  • ABBREVIATIONS: CS, corticosteroid; GR, glucocorticoid receptor; PK/PD, pharmacokinetic/pharmacodynamic; TAT, tyrosine aminotransferase; PEPCK, phosphoenolpyruvate carboxykinase; ADX, adrenalectomized; MPL, methylprednisolone; GRE, glucocorticoid-responsive element; TC, hypothetical transit biosignal; DR, cytosolic drug-receptor complex; DR(N), drug-receptor complex in nucleus.

    • Received October 10, 2003.
    • Accepted December 12, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 309 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 309, Issue 1
1 Apr 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Receptor/Gene-Mediated Pharmacodynamic Effects of Methylprednisolone on Phosphoenolpyruvate Carboxykinase Regulation in Rat Liver
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Receptor/Gene-Mediated Pharmacodynamic Effects of Methylprednisolone on Phosphoenolpyruvate Carboxykinase Regulation in Rat Liver

Jin Y. Jin, Debra C. DuBois, Richard R. Almon and William J. Jusko
Journal of Pharmacology and Experimental Therapeutics April 1, 2004, 309 (1) 328-339; DOI: https://doi.org/10.1124/jpet.103.061515

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Receptor/Gene-Mediated Pharmacodynamic Effects of Methylprednisolone on Phosphoenolpyruvate Carboxykinase Regulation in Rat Liver

Jin Y. Jin, Debra C. DuBois, Richard R. Almon and William J. Jusko
Journal of Pharmacology and Experimental Therapeutics April 1, 2004, 309 (1) 328-339; DOI: https://doi.org/10.1124/jpet.103.061515
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Lipopolysaccharide Induces Epithelium- and Prostaglandin E2-Dependent Relaxation of Mouse Isolated Trachea through Activation of Cyclooxygenase (COX)-1 and COX-2
  • Cannabinoid-Mediated Elevation of Intracellular Calcium: A Structure-Activity Relationship
  • Protease-Activated Receptor-2 Peptides Activate Neurokinin-1 Receptors in the Mouse Isolated Trachea
Show more INFLAMMATION AND IMMUNOPHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics