Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCARDIOVASCULAR

Saxitoxin Blocks L-Type ICa

Zhi Su, Michael Sheets, Hideyuki Ishida, Fenghua Li and William H. Barry
Journal of Pharmacology and Experimental Therapeutics January 2004, 308 (1) 324-329; DOI: https://doi.org/10.1124/jpet.103.056564
Zhi Su
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Sheets
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyuki Ishida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fenghua Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William H. Barry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Saxitoxin (STX) and tetrodotoxin (TTX) are frequently used to selectively block sodium channels. In this study, we provide evidence that commercial STX also inhibits L-type Ca2+ currents (ICa,L) in adult mouse ventricular myocytes (VMs) and tsA-201 cells that were transiently cotransfected with three calcium channel subunits. We measured inhibition of sodium currents (INa) in mouse VMs, of ICa,L in mouse VM and tsA-201 cells, and intracellular calcium concentration ([Ca2+]i) transients in single mouse VMs. STX or TTX was abruptly applied before the test voltage pulse using a rapid solution switcher device. STX (10 μM; Calbiochem) and TTX (60 μM; Sigma-Aldrich) completely blocked INa in mouse VMs. However, STX at 10 μM also reduced ICa,L in mouse VM by 39% (P < 0.0001; n = 14), whereas TTX at 60 μM had no effect on ICa,L. STX (10 μM; Calbiochem) reduced the amplitude of the [Ca2+]i transients in mouse VMs by 36% (P < 0.0001; n = 10). In contrast, TTX (60 μM; Sigma-Aldrich) only reduced the amplitude of the [Ca2+]i transients by 9% (P = 0.003; n = 5). STX (10 μM) obtained from Sigma-Aldrich showed a similar inhibitory effect on ICa,L (33%) (P < 0.0001; n = 5) in mouse VMs. STX (Calbiochem) inhibited the calcium currents of tsA-201 cells in a dose-dependent manner. This inhibition was voltage-independent. The current-voltage relationship of calcium currents in tsA-201 cells was not altered by STX. These results indicate that STX partially blocks L-type Ca2+ channels and thus provide further evidence that its effects are not specific for Na+ channels.

Footnotes

  • This work was supported in part by National Institutes of Health Grants HL44630 and HL52338.

  • DOI: 10.1124/jpet.103.056564.

  • ABBREVIATIONS: STX, saxitoxin; TTX, tetrodotoxin; [Ca2+]i, intracellular calcium concentration; VM, ventricular myocyte; ICP, inductively coupled plasma; I-V, current-voltage relationship.

  • ↵1 Current address: Abbott Laboratories, Chicago, IL 60064.

    • Received July 3, 2003.
    • Accepted October 9, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 308 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 308, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Saxitoxin Blocks L-Type ICa
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCARDIOVASCULAR

Saxitoxin Blocks L-Type ICa

Zhi Su, Michael Sheets, Hideyuki Ishida, Fenghua Li and William H. Barry
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 324-329; DOI: https://doi.org/10.1124/jpet.103.056564

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCARDIOVASCULAR

Saxitoxin Blocks L-Type ICa

Zhi Su, Michael Sheets, Hideyuki Ishida, Fenghua Li and William H. Barry
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 324-329; DOI: https://doi.org/10.1124/jpet.103.056564
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Optimized S-nitrosohemoglobin Synthesis in Red Blood Cells
  • Exosomal miRNAs drive thrombosis in COVID-19
  • mitochondrial miRs in Fabry disease
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics