Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticlePERSPECTIVES IN PHARMACOLOGY

Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3)

Johan W. Jonker and Alfred H. Schinkel
Journal of Pharmacology and Experimental Therapeutics January 2004, 308 (1) 2-9; DOI: https://doi.org/10.1124/jpet.103.053298
Johan W. Jonker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfred H. Schinkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

For the elimination of environmental toxins and metabolic waste products, the body is equipped with a range of broad-specificity transporters that are generally present in the liver, kidney, and intestine. The polyspecific organic cation transporters OCT1, 2, and 3 (SLC22A1-3) mediate the facilitated transport of a variety of structurally diverse organic cations, including many drugs, toxins, and endogenous compounds. OCT1 and OCT2 are found in the basolateral membrane of hepatocytes, enterocytes, and renal proximal tubular cells. OCT3 has a more widespread tissue distribution and is considered to be the major component of the extraneuronal monoamine transport system (or uptake-2), which is responsible for the peripheral elimination of monoamine neurotransmitters. Studies with knockout mouse models have directly demonstrated that these transporters can have a major impact on the pharmacological behavior of various substrate organic cations. The recent identification of polymorphic genetic variants of human OCT1 and OCT2 that severely affect transport activity thus suggests that some of the interpatient differences in response and sensitivity to cationic drugs may be caused by variable activity of these transporters.

Footnotes

  • DOI: 10.1124/jpet.103.053298.

  • ABBREVIATIONS: SLC, solute carrier superfamily; OCT, organic cation transporter in human and rat; TMD, transmembrane domain; EMT, extraneuronal monoamine transporter; TEA, tetraethylammonium; MPP+, 1-methyl-4-phenylpyridinium; RT-PCR, reverse transcription-polymerase chain reaction; Oct, organic cation transporter in mice.

    • Received September 30, 2003.
    • Accepted October 23, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 308 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 308, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3)
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticlePERSPECTIVES IN PHARMACOLOGY

Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3)

Johan W. Jonker and Alfred H. Schinkel
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 2-9; DOI: https://doi.org/10.1124/jpet.103.053298

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticlePERSPECTIVES IN PHARMACOLOGY

Pharmacological and Physiological Functions of the Polyspecific Organic Cation Transporters: OCT1, 2, and 3 (SLC22A1-3)

Johan W. Jonker and Alfred H. Schinkel
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 2-9; DOI: https://doi.org/10.1124/jpet.103.053298
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Cloning and Functional Characteristics
    • Expression and Subcellular Localization
    • Catecholamine Transport
    • Alternative Splicing of OCTs
    • Genetic Variations in OCTs
    • Knockout Mouse Models
    • Conclusions and Perspectives
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Acute and Delayed Clinical Manifestations of OP Toxicity
  • Miltefosine as Mediator of the Immune Response
  • Histamine Receptor Knockout Mice
Show more Perspectives in Pharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics