Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Sensitization of Neuronal A2A Adenosine Receptors after Persistent D2 Dopamine Receptor Activation

Timothy A. Vortherms and Val J. Watts
Journal of Pharmacology and Experimental Therapeutics January 2004, 308 (1) 221-227; DOI: https://doi.org/10.1124/jpet.103.057083
Timothy A. Vortherms
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Val J. Watts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Acute activation of Gαi/o-coupled D2 dopamine receptors inhibits A2A adenosine receptor stimulation of adenylate cyclase. This antagonistic interaction between D2 dopamine and A2A adenosine receptors has been well documented; however, the effects of persistent activation of D2 dopamine receptors on subsequent A2A adenosine receptor signaling have not been explored. The present study investigated the effects of short-term (3-h) and long-term (18-h) activation of D2L dopamine receptors on subsequent A2A adenosine receptor stimulation of adenylate cyclase in CAD-D2L and NS20Y-D2L neuroblastoma cells. Short- and long-term activation of D2L dopamine receptors markedly increased 5′-N-methylcarboxamidoadenosine (MECA)-stimulated cyclic AMP accumulation 1.4-fold and 1.7-fold, respectively. D2L receptor-induced sensitization of A2A-stimulated cyclic AMP accumulation was blocked by the D2 antagonist spiperone and pertussis toxin pretreatment. In addition, persistent activation of A2A adenosine receptors resulted in 50% desensitization of subsequent MECA-stimulated cyclic AMP accumulation; however, MECA-induced desensitization of A2A adenosine receptors did not prevent completely quinpirole-induced sensitization of adenylate cyclase. These studies revealed a novel mode of regulation between D2L dopamine and A2A adenosine receptors and suggest a cooperative interaction in the regulation of cyclic AMP signaling.

Footnotes

  • This work was supported by a Purdue Research Foundation grant (to T.A.V. and V.J.W.) and National Institute of Mental Health Grant MH60397 (to V.J.W.).

  • DOI: 10.1124/jpet.103.057083.

  • ABBREVIATIONS: AC(1-9), adenylate cyclase type (1-9); CAD, Cath.a. differentiated cells; DARPP-32, dopamine- and cyclic AMP-regulated phosphoprotein 32 kDa; EBSS, Earle's balanced salt solution; ANOVA, analysis of variance; PKA, cyclic AMP dependent protein kinase A.

    • Received July 16, 2003.
    • Accepted September 17, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 308 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 308, Issue 1
1 Jan 2004
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensitization of Neuronal A2A Adenosine Receptors after Persistent D2 Dopamine Receptor Activation
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Sensitization of Neuronal A2A Adenosine Receptors after Persistent D2 Dopamine Receptor Activation

Timothy A. Vortherms and Val J. Watts
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 221-227; DOI: https://doi.org/10.1124/jpet.103.057083

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Sensitization of Neuronal A2A Adenosine Receptors after Persistent D2 Dopamine Receptor Activation

Timothy A. Vortherms and Val J. Watts
Journal of Pharmacology and Experimental Therapeutics January 1, 2004, 308 (1) 221-227; DOI: https://doi.org/10.1124/jpet.103.057083
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Iclepertin (BI 425809) in schizophrenia-related models
  • D1 agonist vs. methylphenidate on PFC working memory
  • Obesity Thwarts Preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics