Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Repression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 by Anthracyclines Contributes to Their Antiapoptotic Activation of p44/42-MAPK

George W. Small, Sivagurunathan Somasundaram, Dominic T. Moore, Yue Y. Shi and Robert Z. Orlowski
Journal of Pharmacology and Experimental Therapeutics December 2003, 307 (3) 861-869; DOI: https://doi.org/10.1124/jpet.103.055806
George W. Small
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sivagurunathan Somasundaram
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dominic T. Moore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yue Y. Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert Z. Orlowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Anthracyclines are commonly used chemotherapeutics, and in some models enhance p44/42-mitogen-activated protein kinase (MAPK) pathway signaling by effects on upstream kinases. To evaluate the impact of anthracyclines on p44/42-MAPK in breast cancer, A1N4-myc human mammary and BT-474 and MDA-MB-231 breast carcinoma cells were studied. Treatment with doxorubicin or epirubicin resulted in increased phospho-p44/42-MAPK levels in a time- and concentration-dependent manner. This was associated with p44/42 activation, as reflected by increased p90 ribosomal protein S6 kinase and Bad phosphorylation. Activation of p44/42 appeared to be antiapoptotic, since MAPK stimulation with epidermal growth factor or a dominant-positive p42 construct inhibited apoptosis. Modest activation of the upstream MAPK kinase MEK was noted under some conditions, but inhibition of MEK did not abolish p44/42 activation, suggesting a contribution from another mechanism. Anthracyclines were found to decrease expression of MAPK phosphatase-1 (MKP-1) both in vitro and in vivo. MKP-1 mRNA levels were decreased in anthracycline-treated cells, and transcription from the MKP-1 promoter was repressed. Inhibition of MKP-1 expression through the use of small interfering RNAs decreased the ability of anthracyclines to induce phospho-p44/42. Wild-type mouse embryo fibroblasts (MEFs) treated with doxorubicin showed increased phospho-p44/42-MAPK levels, but MEFs from MKP-1 heterozygous and homozygous knockout mice had blunted p44/42 activation. These studies support the ability of anthracyclines to activate antiapoptotic p44/42-MAPK phosphorylation in breast cancer, and indicate that this occurs in part through the novel mechanism of repression of MKP-1 transcription.

Footnotes

  • This work was supported in part by Department of Defense Breast Cancer Research Program Grant BC991049, the Leukemia and Lymphoma Society Grant R6206-02, and the Ellence Research Fund.

  • DOI: 10.1124/jpet.103.055806.

  • ABBREVIATIONS: MAPK, mitogen-activated protein kinase; RSK, ribosomal protein S6 kinase; MEK, mitogen-activated protein kinase kinase; HSC, heat shock cognate protein; EGF, epidermal growth factor; ERK, extracellular signal-regulated kinase; siRNA, small interfering RNA; MKP, mitogen-activated protein kinase phosphatase; PBS, phosphate-buffered saline; MEM, modified Eagle's medium; LCCC TCF, Lineberger Comprehensive Cancer Center Tissue Culture Facility; RT-PCR, reverse transcription-polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; CMV, cytomegalovirus; luc, luciferase; PP1, phosphoprotein phosphatase-1; PP2A, phosphoprotein phosphatase-2A; MEFs, mouse embryo fibroblasts.

  • ↵1 Current address: University of Houston-Victoria, School of Arts and Science, 3007 N. Ben Wilson, Victoria, TX 77901-5731.

    • Received June 16, 2003.
    • Accepted August 28, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 307 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 307, Issue 3
1 Dec 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Repression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 by Anthracyclines Contributes to Their Antiapoptotic Activation of p44/42-MAPK
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Repression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 by Anthracyclines Contributes to Their Antiapoptotic Activation of p44/42-MAPK

George W. Small, Sivagurunathan Somasundaram, Dominic T. Moore, Yue Y. Shi and Robert Z. Orlowski
Journal of Pharmacology and Experimental Therapeutics December 1, 2003, 307 (3) 861-869; DOI: https://doi.org/10.1124/jpet.103.055806

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCHEMOTHERAPY, ANTIBIOTICS, AND GENE THERAPY

Repression of Mitogen-Activated Protein Kinase (MAPK) Phosphatase-1 by Anthracyclines Contributes to Their Antiapoptotic Activation of p44/42-MAPK

George W. Small, Sivagurunathan Somasundaram, Dominic T. Moore, Yue Y. Shi and Robert Z. Orlowski
Journal of Pharmacology and Experimental Therapeutics December 1, 2003, 307 (3) 861-869; DOI: https://doi.org/10.1124/jpet.103.055806
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Targeting LGR5-positive cells in ovarian cancer
  • Ocular Palonosetron for Prevention of Nausea and Vomiting
  • PTP4A3 and Ovarian Cancer
Show more Chemotherapy, Antibiotics, and Gene Therapy

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics