Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Mechanism-Based Modeling of the Pharmacodynamic Interaction of Alphaxalone and Midazolam in Rats

S. A. G. Visser, D. R. H. Huntjens, P. H. van der Graaf, L. A. Peletier and M. Danhof
Journal of Pharmacology and Experimental Therapeutics November 2003, 307 (2) 765-775; DOI: https://doi.org/10.1124/jpet.103.054510
S. A. G. Visser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. R. H. Huntjens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. H. van der Graaf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. A. Peletier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Danhof
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The objective of the present investigation was to characterize the pharmacodynamic interaction between the synthetic neuroactive steroid alphaxalone and the benzodiazepine midazolam. The time course of the electroencephalographic (EEG) effect (11.5-30 Hz) was determined in rats in conjunction with plasma concentrations. Alphaxalone was administered as a continuous intravenous infusion of 0, 1.2, 2.2, or 5.2 mg over 360 min. Midazolam was administered as a 5-min intravenous bolus infusion of 4 mg·kg-1. The pharmacokinetic profiles of both drugs were described by a two-compartment model. No pharmacokinetic interaction was observed. The EEG effect versus time profiles of midazolam and alphaxalone, when administered separately and in combination, were modeled on the basis of the recently proposed mechanism-based pharmacokinetic/pharmacodynamic model for GABAA receptor modulators, which contains separate expressions to describe the drug-receptor interaction and the stimulus-response relationship. The pharmacodynamic interaction between alphaxalone and midazolam was best characterized using an independent drug-drug interaction model without an expression for allosteric modulation of the effect of midazolam by alphaxalone. The final model contained an exponential expression to account for acute functional adaptation to the EEG effect upon continuous infusion of alphaxalone. The mechanism-based analysis showed that this functional adaptation is best explained by a change in the system-specific stimulus-response relationship, rather than the drug-receptor activation process. It is concluded that the pharmacodynamic interaction between alphaxalone and midazolam in vivo is best described using an independent interaction model without allosteric modulation.

Footnotes

  • ↵1 Current address: AstraZeneca R&D Södertälje, DMPK and BAC, S-15185 Södertälje, Sweden.

  • DOI: 10.1124/jpet.103.054510.

  • ABBREVIATIONS: PK/PD, pharmacokinetic-pharmacodynamic; EEG, electroencephalogram; HPβCD, 2-hydroxy-propyl-β-cyclodextrin; HPLC, high-performance liquid chromatography; DMSO, dimethyl sulfoxide; AUE, area under effect curve; MVOF, minimum value of objective function.

    • Received May 14, 2003.
    • Accepted July 10, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 307 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 307, Issue 2
1 Nov 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mechanism-Based Modeling of the Pharmacodynamic Interaction of Alphaxalone and Midazolam in Rats
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Mechanism-Based Modeling of the Pharmacodynamic Interaction of Alphaxalone and Midazolam in Rats

S. A. G. Visser, D. R. H. Huntjens, P. H. van der Graaf, L. A. Peletier and M. Danhof
Journal of Pharmacology and Experimental Therapeutics November 1, 2003, 307 (2) 765-775; DOI: https://doi.org/10.1124/jpet.103.054510

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleNEUROPHARMACOLOGY

Mechanism-Based Modeling of the Pharmacodynamic Interaction of Alphaxalone and Midazolam in Rats

S. A. G. Visser, D. R. H. Huntjens, P. H. van der Graaf, L. A. Peletier and M. Danhof
Journal of Pharmacology and Experimental Therapeutics November 1, 2003, 307 (2) 765-775; DOI: https://doi.org/10.1124/jpet.103.054510
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CVN424, a novel GPR6 inverse agonist for Parkinson's disease
  • Methylone Brain Concentrations and Pharmacodynamic Effects
  • Oxysterols and Ethanol
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics