Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Human Hepatic CYP2E1 Expression during Development

Elizabeth K. Johnsrud, Sevasti B. Koukouritaki, Karthika Divakaran, Laura L. Brunengraber, Ronald N. Hines and D. Gail McCarver
Journal of Pharmacology and Experimental Therapeutics October 2003, 307 (1) 402-407; DOI: https://doi.org/10.1124/jpet.103.053124
Elizabeth K. Johnsrud
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sevasti B. Koukouritaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karthika Divakaran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura L. Brunengraber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronald N. Hines
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Gail McCarver
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Correction to “Human Hepatic CYP2E1 Expression during Development” - April 01, 2004

Abstract

Human hepatic CYP2E1 expression developmental changes likely have an impact on the effects of xenobiotics metabolized by the encoded enzyme. To resolve previous conflicting results, CYP2E1 content was determined in human hepatic microsomes from samples spanning fetal (n = 73, 8–37 weeks) and postnatal (n = 165, 1 day–18 years) ages. Measurable immunodetectable CYP2E1 was seen in 18 of 49 second-trimester (93–186 gestational days) and 12 of 15 third-trimester (>186 days) fetal samples (medians = 0.35 and 6.7 pmol/mg microsomal protein, respectively). CYP2E1 in neonatal samples was low and less than that of infants 31 to 90 days of age, which was less than that of older infants, children, and young adults [median (range) = 8.8 (0–70); 23.8 (10–43); 41.4 (18–95) pmol/mg microsomal protein, respectively; each P < 0.001, analysis of variance, post hoc]. Among those older than 90 days of age, CYP2E1 content was similar. A 4-fold or greater intersubject variation was observed among samples from each age group, with the greatest variation, 80-fold, seen among neonatal samples. Among subjects of known gestational and postnatal age (n = 29) increasing protein content was associated with increasing postnatal age (P < 0.001, linear regression), but only equivocally with increasing gestational age (P = 0.07). Individuals from the third trimester through 90 days postnatal age with one or more CYP2E1*1D alleles had lower CYP2E1 protein content than similar-aged subjects who were homozygous CYP2E1*1C. In summary, CYP2E1 was clearly expressed in human fetal liver. Furthermore, the postnatal data suggest that infants less than 90 days old would have decreased clearance of CYP2E1 substrates compared with older infants, children, and adults.

Footnotes

  • This study was supported in part by U.S. Public Health Service Grants AA11636 (to D.G.M.) and CA53106 (to R.N.H.).

  • DOI: 10.1124/jpet.102.053124.

  • ABBREVIATIONS: RT-PCR, reverse transcriptase-polymerase chain reaction; AFLP, amplified fragment-length polymorphism; ANOVA, analysis of variance; MANOVA, multiple analysis of variance.

    • Received April 22, 2003.
    • Accepted July 10, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 307 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 307, Issue 1
1 Oct 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Human Hepatic CYP2E1 Expression during Development
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Human Hepatic CYP2E1 Expression during Development

Elizabeth K. Johnsrud, Sevasti B. Koukouritaki, Karthika Divakaran, Laura L. Brunengraber, Ronald N. Hines and D. Gail McCarver
Journal of Pharmacology and Experimental Therapeutics October 1, 2003, 307 (1) 402-407; DOI: https://doi.org/10.1124/jpet.103.053124

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Human Hepatic CYP2E1 Expression during Development

Elizabeth K. Johnsrud, Sevasti B. Koukouritaki, Karthika Divakaran, Laura L. Brunengraber, Ronald N. Hines and D. Gail McCarver
Journal of Pharmacology and Experimental Therapeutics October 1, 2003, 307 (1) 402-407; DOI: https://doi.org/10.1124/jpet.103.053124
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics