Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways

M. J. Millan, A. Gobert, F. Lejeune, A. Dekeyne, A. Newman-Tancredi, V. Pasteau, J.-M. Rivet and D. Cussac
Journal of Pharmacology and Experimental Therapeutics September 2003, 306 (3) 954-964; DOI: https://doi.org/10.1124/jpet.103.051797
M. J. Millan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Gobert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Lejeune
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Dekeyne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Newman-Tancredi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Pasteau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.-M. Rivet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Cussac
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Agomelatine (S20098) displayed pKi values of 6.4 and 6.2 at native (porcine) and cloned, human (h)5-hydroxytryptamine (5-HT)2C receptors, respectively. It also interacted with h5-HT2B receptors (6.6), whereas it showed low affinity at native (rat)/cloned, human 5-HT2A (<5.0/5.3) and 5-HT1A (<5.0/5.2) receptors, and negligible (<5.0) affinity for other 5-HT receptors. In antibody capture/scintillation proximity assays, agomelatine concentration dependently and competitively abolished h5-HT2C receptor-mediated activation of Gq/11 and Gi3 (pA2 values of 6.0 and 6.1). As measured by [3H]phosphatidylinositol depletion, agomelatine abolished activation of phospholipase C by h5-HT2C (pKB value of 6.1) and h5-HT2B (pKB value of 6.6) receptors. In vivo, it dose dependently blocked induction of penile erections by the 5-HT2C agonists (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine (Ro60,0175) and 1-methyl-2-(5,8,8-trimethyl-8H-3-aza-cyclopenta[a]inden-3-yl) ethylamine (Ro60,0332). Furthermore, agomelatine dose dependently enhanced dialysis levels of dopamine in frontal cortex of freely moving rats, whereas they were unaffected in nucleus accumbens and striatum. Although the electrical activity of ventrotegmental dopaminergic neurons was unaffected agomelatine, it abolished their inhibition by Ro60,0175. Extracellular levels of noradrenaline in frontal cortex were also dose dependently enhanced by agomelatine in parallel with an acceleration in the firing rate of adrenergic cell bodies in the locus coeruleus. These increases in noradrenaline and dopamine levels were unaffected by the selective melatonin antagonist N-[2-(5-ethyl-benzo[b]thien-3-yl)ethyl] acetamide (S22153) and likely flect blockade of 5-HT2C receptors inhibitory to frontocortical dopaminergic and adrenergic pathways. Correspondingly, distinction to agomelatine, melatonin showed negligible activity 5-HT2C receptors and failed to modify the activity of adrenergic and dopaminergic pathways. In conclusion, in contrast to melatonin, agomelatine behaves as an antagonist at 5-HT2B and 5-HT2C receptors: blockade of the latter reinforces frontocortical adrenergic and dopaminergic transmission.

Footnotes

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • DOI: 10.1124/jpet.103.051797.

  • ABBREVIATIONS: NA, noradrenaline; MT, melatonin; 5-HT, 5-hydroxytryptamine (serotonin); DA, dopamine; FCX, frontal cortex; CHO, Chinese hamster ovary; SPA, scintillation proximity assay; [35S]GTPγS, guanosine-5′-O-(3-[35S]thio)-triphosphate; PI, phosphatidylinositol; PLC, phospholipase C; VTA, ventrotegmental area; LC, locus coeruleus; ANOVA, analysis of variance; SB242,084, 6-chloro-5-methyl-1-[6-(2-methylpyridin-3-yloxy)pyridin-3-ylcarbamoyl]indoline.

    • Received March 18, 2003.
    • Accepted April 30, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 306 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 306, Issue 3
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways

M. J. Millan, A. Gobert, F. Lejeune, A. Dekeyne, A. Newman-Tancredi, V. Pasteau, J.-M. Rivet and D. Cussac
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 954-964; DOI: https://doi.org/10.1124/jpet.103.051797

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

The Novel Melatonin Agonist Agomelatine (S20098) Is an Antagonist at 5-Hydroxytryptamine2C Receptors, Blockade of Which Enhances the Activity of Frontocortical Dopaminergic and Adrenergic Pathways

M. J. Millan, A. Gobert, F. Lejeune, A. Dekeyne, A. Newman-Tancredi, V. Pasteau, J.-M. Rivet and D. Cussac
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 954-964; DOI: https://doi.org/10.1124/jpet.103.051797
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted tryptamine activity at 5-HT receptors & SERT
  • In Vivo SRI-32743 Attenuates Tat Effects on Extracellular DA
  • Kv7 Opener Attenuates Seizures and Cognitive Deficit
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics