Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Contribution of Lymphatically Transported Testosterone Undecanoate to the Systemic Exposure of Testosterone after Oral Administration of Two Andriol Formulations in Conscious Lymph Duct-Cannulated Dogs

David M. Shackleford, W. A. (Fried) Faassen, Natalie Houwing, Holger Lass, Glenn A. Edwards, Christopher J. H. Porter and William N. Charman
Journal of Pharmacology and Experimental Therapeutics September 2003, 306 (3) 925-933; DOI: https://doi.org/10.1124/jpet.103.052522
David M. Shackleford
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. A. (Fried) Faassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalie Houwing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Holger Lass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Glenn A. Edwards
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher J. H. Porter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William N. Charman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Orally administered testosterone (T) is ineffective in the treatment of male androgen deficiency syndromes due to extensive presystemic first-pass metabolism. In contrast, the lipophilic long-chain ester testosterone undecanoate (TU) exhibits androgenic activity that has been attributed to formation of T via systemic hydrolysis of lymphatically transported TU. However, there are no definitive data regarding the oral bioavailability of TU or the extent to which lymphatically transported TU contributes to the systemic availability of T after oral TU administration. This report describes the application of stable isotope methodology in a thoracic lymph duct-cannulated dog model to study the oral bioavailability and lymphatic transport of TU after postprandial administration. When administered as either Andriol or Andriol Testocaps, the mean (±S.E., n = 4) absolute bioavailability of TU was 3.25 ± 0.48 and 2.88 ± 0.88%, respectively, and lymphatically transported TU accounted for between 91.5 and 99.7% of the systemically available ester. Model-independent pharmacokinetic analysis indicated that 83.6 ± 1.6 and 84.1 ± 8.2% of the systemically available T, resulting from Andriol or Andriol Testocaps, respectively, was due to systemic hydrolysis of lymphatically transported TU. These data demonstrate that intestinal lymphatic transport of TU produces increased systemic exposure of T by avoiding the extensive first-pass effect responsible for the inactivation of T after oral administration.

Footnotes

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • DOI: 10.1124/jpet.103.052522.

  • ABBREVIATIONS: T, testosterone; TU, testosterone undecanoate; DHTU, 5α-dihydrotestosterone undecanoate; DHT, 5α-dihydrotestosterone; LC, liquid chromatograph; LC-MS/MS, liquid chromatography coupled to tandem mass spectrometry; LC, liquid chromatography; LOQ, limits of quantitation; GC, gas chromatography; TG, triglyceride; AUC, area under the curve.

    • Received April 2, 2003.
    • Accepted May 22, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 306 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 306, Issue 3
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Contribution of Lymphatically Transported Testosterone Undecanoate to the Systemic Exposure of Testosterone after Oral Administration of Two Andriol Formulations in Conscious Lymph Duct-Cannulated Dogs
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Contribution of Lymphatically Transported Testosterone Undecanoate to the Systemic Exposure of Testosterone after Oral Administration of Two Andriol Formulations in Conscious Lymph Duct-Cannulated Dogs

David M. Shackleford, W. A. (Fried) Faassen, Natalie Houwing, Holger Lass, Glenn A. Edwards, Christopher J. H. Porter and William N. Charman
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 925-933; DOI: https://doi.org/10.1124/jpet.103.052522

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Contribution of Lymphatically Transported Testosterone Undecanoate to the Systemic Exposure of Testosterone after Oral Administration of Two Andriol Formulations in Conscious Lymph Duct-Cannulated Dogs

David M. Shackleford, W. A. (Fried) Faassen, Natalie Houwing, Holger Lass, Glenn A. Edwards, Christopher J. H. Porter and William N. Charman
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 925-933; DOI: https://doi.org/10.1124/jpet.103.052522
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics